nebula/lighthouse.go

751 lines
20 KiB
Go
Raw Normal View History

2019-11-19 18:00:20 +01:00
package nebula
import (
2021-04-01 17:23:31 +02:00
"encoding/binary"
"errors"
2019-11-19 18:00:20 +01:00
"fmt"
"net"
"sync"
"time"
"github.com/golang/protobuf/proto"
"github.com/rcrowley/go-metrics"
2021-03-19 02:37:24 +01:00
"github.com/sirupsen/logrus"
2019-11-19 18:00:20 +01:00
)
2021-04-01 00:32:02 +02:00
//TODO: nodes are roaming lighthouses, this is bad. How are they learning?
var ErrHostNotKnown = errors.New("host not known")
2021-04-01 00:32:02 +02:00
// The maximum number of ip addresses to store for a given vpnIp per address family
const maxAddrs = 10
type ip4And6 struct {
//TODO: adding a lock here could allow us to release the lock on lh.addrMap quicker
2021-04-01 17:23:31 +02:00
// v4 and v6 store addresses that have been self reported by the client in a server or where all addresses are stored on a client
2021-04-01 00:32:02 +02:00
v4 []*Ip4AndPort
v6 []*Ip6AndPort
// Learned addresses are ones that a client does not know about but a lighthouse learned from as a result of the received packet
2021-04-01 17:23:31 +02:00
// This is only used if you are a lighthouse server
2021-04-01 00:32:02 +02:00
learnedV4 []*Ip4AndPort
learnedV6 []*Ip6AndPort
}
2019-11-19 18:00:20 +01:00
type LightHouse struct {
2021-04-01 00:32:02 +02:00
//TODO: We need a timer wheel to kick out vpnIps that haven't reported in a long time
2019-11-19 18:00:20 +01:00
sync.RWMutex //Because we concurrently read and write to our maps
amLighthouse bool
2021-04-01 17:23:31 +02:00
myVpnIp uint32
myVpnZeros uint32
2019-11-19 18:00:20 +01:00
punchConn *udpConn
// Local cache of answers from light houses
2021-04-01 00:32:02 +02:00
addrMap map[uint32]*ip4And6
2019-11-19 18:00:20 +01:00
Add lighthouse.{remoteAllowList,localAllowList} (#217) These settings make it possible to blacklist / whitelist IP addresses that are used for remote connections. `lighthouse.remoteAllowList` filters which remote IPs are allow when fetching from the lighthouse (or, if you are the lighthouse, which IPs you store and forward to querying hosts). By default, any remote IPs are allowed. You can provide CIDRs here with `true` to allow and `false` to deny. The most specific CIDR rule applies to each remote. If all rules are "allow", the default will be "deny", and vice-versa. If both "allow" and "deny" rules are present, then you MUST set a rule for "0.0.0.0/0" as the default. lighthouse: remoteAllowList: # Example to block IPs from this subnet from being used for remote IPs. "172.16.0.0/12": false # A more complicated example, allow public IPs but only private IPs from a specific subnet "0.0.0.0/0": true "10.0.0.0/8": false "10.42.42.0/24": true `lighthouse.localAllowList` has the same logic as above, but it applies to the local addresses we advertise to the lighthouse. Additionally, you can specify an `interfaces` map of regular expressions to match against interface names. The regexp must match the entire name. All interface rules must be either true or false (and the default rule will be the inverse). CIDR rules are matched after interface name rules. Default is all local IP addresses. lighthouse: localAllowList: # Example to blacklist docker interfaces. interfaces: 'docker.*': false # Example to only advertise IPs in this subnet to the lighthouse. "10.0.0.0/8": true
2020-04-08 21:36:43 +02:00
// filters remote addresses allowed for each host
// - When we are a lighthouse, this filters what addresses we store and
// respond with.
// - When we are not a lighthouse, this filters which addresses we accept
// from lighthouses.
remoteAllowList *AllowList
// filters local addresses that we advertise to lighthouses
localAllowList *AllowList
// used to trigger the HandshakeManager when we receive HostQueryReply
handshakeTrigger chan<- uint32
2019-11-19 18:00:20 +01:00
// staticList exists to avoid having a bool in each addrMap entry
// since static should be rare
staticList map[uint32]struct{}
lighthouses map[uint32]struct{}
interval int
2021-03-19 02:37:24 +01:00
nebulaPort uint32 // 32 bits because protobuf does not have a uint16
2019-11-19 18:00:20 +01:00
punchBack bool
punchDelay time.Duration
metrics *MessageMetrics
metricHolepunchTx metrics.Counter
2021-03-26 15:46:30 +01:00
l *logrus.Logger
2019-11-19 18:00:20 +01:00
}
type EncWriter interface {
SendMessageToVpnIp(t NebulaMessageType, st NebulaMessageSubType, vpnIp uint32, p, nb, out []byte)
}
2021-04-01 17:23:31 +02:00
func NewLightHouse(l *logrus.Logger, amLighthouse bool, myVpnIpNet *net.IPNet, ips []uint32, interval int, nebulaPort uint32, pc *udpConn, punchBack bool, punchDelay time.Duration, metricsEnabled bool) *LightHouse {
ones, _ := myVpnIpNet.Mask.Size()
2019-11-19 18:00:20 +01:00
h := LightHouse{
amLighthouse: amLighthouse,
2021-04-01 17:23:31 +02:00
myVpnIp: ip2int(myVpnIpNet.IP),
myVpnZeros: uint32(32 - ones),
2021-04-01 00:32:02 +02:00
addrMap: make(map[uint32]*ip4And6),
2019-11-19 18:00:20 +01:00
nebulaPort: nebulaPort,
lighthouses: make(map[uint32]struct{}),
staticList: make(map[uint32]struct{}),
interval: interval,
punchConn: pc,
punchBack: punchBack,
punchDelay: punchDelay,
2021-03-26 15:46:30 +01:00
l: l,
2019-11-19 18:00:20 +01:00
}
if metricsEnabled {
h.metrics = newLighthouseMetrics()
h.metricHolepunchTx = metrics.GetOrRegisterCounter("messages.tx.holepunch", nil)
} else {
h.metricHolepunchTx = metrics.NilCounter{}
}
for _, ip := range ips {
h.lighthouses[ip] = struct{}{}
2019-11-19 18:00:20 +01:00
}
return &h
}
Add lighthouse.{remoteAllowList,localAllowList} (#217) These settings make it possible to blacklist / whitelist IP addresses that are used for remote connections. `lighthouse.remoteAllowList` filters which remote IPs are allow when fetching from the lighthouse (or, if you are the lighthouse, which IPs you store and forward to querying hosts). By default, any remote IPs are allowed. You can provide CIDRs here with `true` to allow and `false` to deny. The most specific CIDR rule applies to each remote. If all rules are "allow", the default will be "deny", and vice-versa. If both "allow" and "deny" rules are present, then you MUST set a rule for "0.0.0.0/0" as the default. lighthouse: remoteAllowList: # Example to block IPs from this subnet from being used for remote IPs. "172.16.0.0/12": false # A more complicated example, allow public IPs but only private IPs from a specific subnet "0.0.0.0/0": true "10.0.0.0/8": false "10.42.42.0/24": true `lighthouse.localAllowList` has the same logic as above, but it applies to the local addresses we advertise to the lighthouse. Additionally, you can specify an `interfaces` map of regular expressions to match against interface names. The regexp must match the entire name. All interface rules must be either true or false (and the default rule will be the inverse). CIDR rules are matched after interface name rules. Default is all local IP addresses. lighthouse: localAllowList: # Example to blacklist docker interfaces. interfaces: 'docker.*': false # Example to only advertise IPs in this subnet to the lighthouse. "10.0.0.0/8": true
2020-04-08 21:36:43 +02:00
func (lh *LightHouse) SetRemoteAllowList(allowList *AllowList) {
lh.Lock()
defer lh.Unlock()
lh.remoteAllowList = allowList
}
func (lh *LightHouse) SetLocalAllowList(allowList *AllowList) {
lh.Lock()
defer lh.Unlock()
lh.localAllowList = allowList
}
2019-11-24 00:55:23 +01:00
func (lh *LightHouse) ValidateLHStaticEntries() error {
for lhIP, _ := range lh.lighthouses {
if _, ok := lh.staticList[lhIP]; !ok {
2019-11-24 00:55:23 +01:00
return fmt.Errorf("Lighthouse %s does not have a static_host_map entry", IntIp(lhIP))
}
}
2019-11-24 00:55:23 +01:00
return nil
}
2021-03-19 02:37:24 +01:00
func (lh *LightHouse) Query(ip uint32, f EncWriter) ([]*udpAddr, error) {
2021-04-01 00:32:02 +02:00
//TODO: we need to hold the lock through the next func
2019-11-19 18:00:20 +01:00
if !lh.IsLighthouseIP(ip) {
lh.QueryServer(ip, f)
}
lh.RLock()
if v, ok := lh.addrMap[ip]; ok {
lh.RUnlock()
2021-04-01 00:32:02 +02:00
return TransformLHReplyToUdpAddrs(v), nil
2019-11-19 18:00:20 +01:00
}
lh.RUnlock()
return nil, ErrHostNotKnown
2019-11-19 18:00:20 +01:00
}
// This is asynchronous so no reply should be expected
func (lh *LightHouse) QueryServer(ip uint32, f EncWriter) {
if !lh.amLighthouse {
// Send a query to the lighthouses and hope for the best next time
query, err := proto.Marshal(NewLhQueryByInt(ip))
if err != nil {
2021-03-26 15:46:30 +01:00
lh.l.WithError(err).WithField("vpnIp", IntIp(ip)).Error("Failed to marshal lighthouse query payload")
2019-11-19 18:00:20 +01:00
return
}
lh.metricTx(NebulaMeta_HostQuery, int64(len(lh.lighthouses)))
2019-11-19 18:00:20 +01:00
nb := make([]byte, 12, 12)
out := make([]byte, mtu)
for n := range lh.lighthouses {
f.SendMessageToVpnIp(lightHouse, 0, n, query, nb, out)
}
}
}
2021-03-19 02:37:24 +01:00
func (lh *LightHouse) QueryCache(ip uint32) []*udpAddr {
2021-04-01 00:32:02 +02:00
//TODO: we need to hold the lock through the next func
2019-11-19 18:00:20 +01:00
lh.RLock()
if v, ok := lh.addrMap[ip]; ok {
lh.RUnlock()
2021-04-01 00:32:02 +02:00
return TransformLHReplyToUdpAddrs(v)
2019-11-19 18:00:20 +01:00
}
lh.RUnlock()
return nil
}
2021-04-01 00:32:02 +02:00
//
func (lh *LightHouse) queryAndPrepMessage(ip uint32, f func(*ip4And6) (int, error)) (bool, int, error) {
lh.RLock()
if v, ok := lh.addrMap[ip]; ok {
n, err := f(v)
lh.RUnlock()
return true, n, err
}
lh.RUnlock()
return false, 0, nil
}
2019-11-19 18:00:20 +01:00
func (lh *LightHouse) DeleteVpnIP(vpnIP uint32) {
// First we check the static mapping
// and do nothing if it is there
if _, ok := lh.staticList[vpnIP]; ok {
return
}
lh.Lock()
//l.Debugln(lh.addrMap)
delete(lh.addrMap, vpnIP)
2021-04-01 00:32:02 +02:00
if lh.l.Level >= logrus.DebugLevel {
lh.l.Debugf("deleting %s from lighthouse.", IntIp(vpnIP))
}
2019-11-19 18:00:20 +01:00
lh.Unlock()
}
2021-04-01 00:32:02 +02:00
// AddRemote is correct way for non LightHouse members to add an address. toAddr will be placed in the learned map
// static means this is a static host entry from the config file, it should only be used on start up
func (lh *LightHouse) AddRemote(vpnIP uint32, toAddr *udpAddr, static bool) {
if ipv4 := toAddr.IP.To4(); ipv4 != nil {
lh.addRemoteV4(vpnIP, NewIp4AndPort(ipv4, uint32(toAddr.Port)), static, true)
} else {
lh.addRemoteV6(vpnIP, NewIp6AndPort(toAddr.IP, uint32(toAddr.Port)), static, true)
}
//TODO: if we do not add due to a config filter we may end up not having any addresses here
if static {
lh.staticList[vpnIP] = struct{}{}
}
}
2021-04-01 17:23:31 +02:00
// unlockedGetAddrs assumes you have the lh lock
func (lh *LightHouse) unlockedGetAddrs(vpnIP uint32) *ip4And6 {
2021-04-01 00:32:02 +02:00
am, ok := lh.addrMap[vpnIP]
if !ok {
2021-04-01 17:23:31 +02:00
am = &ip4And6{}
2021-04-01 00:32:02 +02:00
lh.addrMap[vpnIP] = am
}
return am
}
// addRemoteV4 is a lighthouse internal method that prepends a remote if it is allowed by the allow list and not duplicated
func (lh *LightHouse) addRemoteV4(vpnIP uint32, to *Ip4AndPort, static bool, learned bool) {
2019-11-19 18:00:20 +01:00
// First we check if the sender thinks this is a static entry
// and do nothing if it is not, but should be considered static
if static == false {
if _, ok := lh.staticList[vpnIP]; ok {
return
}
}
lh.Lock()
defer lh.Unlock()
2021-04-01 17:23:31 +02:00
am := lh.unlockedGetAddrs(vpnIP)
2021-04-01 00:32:02 +02:00
if learned {
if !lh.unlockedShouldAddV4(am.learnedV4, to) {
2019-11-19 18:00:20 +01:00
return
}
2021-04-01 00:32:02 +02:00
am.learnedV4 = prependAndLimitV4(am.learnedV4, to)
} else {
if !lh.unlockedShouldAddV4(am.v4, to) {
return
}
am.v4 = prependAndLimitV4(am.v4, to)
}
}
func prependAndLimitV4(cache []*Ip4AndPort, to *Ip4AndPort) []*Ip4AndPort {
cache = append(cache, nil)
copy(cache[1:], cache)
cache[0] = to
if len(cache) > MaxRemotes {
cache = cache[:maxAddrs]
}
return cache
}
// unlockedShouldAddV4 checks if to is allowed by our allow list and is not already present in the cache
func (lh *LightHouse) unlockedShouldAddV4(am []*Ip4AndPort, to *Ip4AndPort) bool {
2021-04-01 17:23:31 +02:00
allow := lh.remoteAllowList.AllowIpV4(to.Ip)
if lh.l.Level >= logrus.TraceLevel {
lh.l.WithField("remoteIp", IntIp(to.Ip)).WithField("allow", allow).Trace("remoteAllowList.Allow")
2019-11-19 18:00:20 +01:00
}
Add lighthouse.{remoteAllowList,localAllowList} (#217) These settings make it possible to blacklist / whitelist IP addresses that are used for remote connections. `lighthouse.remoteAllowList` filters which remote IPs are allow when fetching from the lighthouse (or, if you are the lighthouse, which IPs you store and forward to querying hosts). By default, any remote IPs are allowed. You can provide CIDRs here with `true` to allow and `false` to deny. The most specific CIDR rule applies to each remote. If all rules are "allow", the default will be "deny", and vice-versa. If both "allow" and "deny" rules are present, then you MUST set a rule for "0.0.0.0/0" as the default. lighthouse: remoteAllowList: # Example to block IPs from this subnet from being used for remote IPs. "172.16.0.0/12": false # A more complicated example, allow public IPs but only private IPs from a specific subnet "0.0.0.0/0": true "10.0.0.0/8": false "10.42.42.0/24": true `lighthouse.localAllowList` has the same logic as above, but it applies to the local addresses we advertise to the lighthouse. Additionally, you can specify an `interfaces` map of regular expressions to match against interface names. The regexp must match the entire name. All interface rules must be either true or false (and the default rule will be the inverse). CIDR rules are matched after interface name rules. Default is all local IP addresses. lighthouse: localAllowList: # Example to blacklist docker interfaces. interfaces: 'docker.*': false # Example to only advertise IPs in this subnet to the lighthouse. "10.0.0.0/8": true
2020-04-08 21:36:43 +02:00
2021-04-01 17:23:31 +02:00
if !allow || ipMaskContains(lh.myVpnIp, lh.myVpnZeros, to.Ip) {
2021-04-01 00:32:02 +02:00
return false
Add lighthouse.{remoteAllowList,localAllowList} (#217) These settings make it possible to blacklist / whitelist IP addresses that are used for remote connections. `lighthouse.remoteAllowList` filters which remote IPs are allow when fetching from the lighthouse (or, if you are the lighthouse, which IPs you store and forward to querying hosts). By default, any remote IPs are allowed. You can provide CIDRs here with `true` to allow and `false` to deny. The most specific CIDR rule applies to each remote. If all rules are "allow", the default will be "deny", and vice-versa. If both "allow" and "deny" rules are present, then you MUST set a rule for "0.0.0.0/0" as the default. lighthouse: remoteAllowList: # Example to block IPs from this subnet from being used for remote IPs. "172.16.0.0/12": false # A more complicated example, allow public IPs but only private IPs from a specific subnet "0.0.0.0/0": true "10.0.0.0/8": false "10.42.42.0/24": true `lighthouse.localAllowList` has the same logic as above, but it applies to the local addresses we advertise to the lighthouse. Additionally, you can specify an `interfaces` map of regular expressions to match against interface names. The regexp must match the entire name. All interface rules must be either true or false (and the default rule will be the inverse). CIDR rules are matched after interface name rules. Default is all local IP addresses. lighthouse: localAllowList: # Example to blacklist docker interfaces. interfaces: 'docker.*': false # Example to only advertise IPs in this subnet to the lighthouse. "10.0.0.0/8": true
2020-04-08 21:36:43 +02:00
}
2021-04-01 00:32:02 +02:00
for _, v := range am {
if v.Ip == to.Ip && v.Port == to.Port {
return false
}
}
return true
}
// addRemoteV6 is a lighthouse internal method that prepends a remote if it is allowed by the allow list and not duplicated
func (lh *LightHouse) addRemoteV6(vpnIP uint32, to *Ip6AndPort, static bool, learned bool) {
// First we check if the sender thinks this is a static entry
// and do nothing if it is not, but should be considered static
if static == false {
if _, ok := lh.staticList[vpnIP]; ok {
return
}
2019-11-19 18:00:20 +01:00
}
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
lh.Lock()
defer lh.Unlock()
2021-04-01 17:23:31 +02:00
am := lh.unlockedGetAddrs(vpnIP)
2021-04-01 00:32:02 +02:00
if learned {
if !lh.unlockedShouldAddV6(am.learnedV6, to) {
return
}
am.learnedV6 = prependAndLimitV6(am.learnedV6, to)
} else {
if !lh.unlockedShouldAddV6(am.v6, to) {
return
}
am.v6 = prependAndLimitV6(am.v6, to)
}
}
func prependAndLimitV6(cache []*Ip6AndPort, to *Ip6AndPort) []*Ip6AndPort {
cache = append(cache, nil)
copy(cache[1:], cache)
cache[0] = to
if len(cache) > MaxRemotes {
cache = cache[:maxAddrs]
}
return cache
}
// unlockedShouldAddV6 checks if to is allowed by our allow list and is not already present in the cache
func (lh *LightHouse) unlockedShouldAddV6(am []*Ip6AndPort, to *Ip6AndPort) bool {
2021-04-01 17:23:31 +02:00
allow := lh.remoteAllowList.AllowIpV6(to.Hi, to.Lo)
if lh.l.Level >= logrus.TraceLevel {
lh.l.WithField("remoteIp", lhIp6ToIp(to)).WithField("allow", allow).Trace("remoteAllowList.Allow")
2021-04-01 00:32:02 +02:00
}
if !allow {
return false
}
for _, v := range am {
2021-04-01 17:23:31 +02:00
if v.Hi == to.Hi && v.Lo == to.Lo && v.Port == to.Port {
2021-04-01 00:32:02 +02:00
return false
}
}
return true
2019-11-19 18:00:20 +01:00
}
2021-04-01 17:23:31 +02:00
func lhIp6ToIp(v *Ip6AndPort) net.IP {
ip := make(net.IP, 16)
binary.BigEndian.PutUint64(ip[:8], v.Hi)
binary.BigEndian.PutUint64(ip[8:], v.Lo)
return ip
}
2019-11-19 18:00:20 +01:00
func (lh *LightHouse) AddRemoteAndReset(vpnIP uint32, toIp *udpAddr) {
if lh.amLighthouse {
lh.DeleteVpnIP(vpnIP)
lh.AddRemote(vpnIP, toIp, false)
}
}
func (lh *LightHouse) IsLighthouseIP(vpnIP uint32) bool {
if _, ok := lh.lighthouses[vpnIP]; ok {
return true
}
return false
}
func NewLhQueryByInt(VpnIp uint32) *NebulaMeta {
return &NebulaMeta{
Type: NebulaMeta_HostQuery,
Details: &NebulaMetaDetails{
VpnIp: VpnIp,
},
}
}
2021-04-01 00:32:02 +02:00
func NewIp4AndPort(ip net.IP, port uint32) *Ip4AndPort {
ipp := Ip4AndPort{Port: port}
ipp.Ip = ip2int(ip)
return &ipp
2021-03-19 02:37:24 +01:00
}
2021-04-01 00:32:02 +02:00
func NewIp6AndPort(ip net.IP, port uint32) *Ip6AndPort {
2021-04-01 17:23:31 +02:00
return &Ip6AndPort{
Hi: binary.BigEndian.Uint64(ip[:8]),
Lo: binary.BigEndian.Uint64(ip[8:]),
Port: port,
}
2019-11-19 18:00:20 +01:00
}
2021-04-01 00:32:02 +02:00
func NewUDPAddrFromLH4(ipp *Ip4AndPort) *udpAddr {
2021-03-19 02:37:24 +01:00
ip := ipp.Ip
return NewUDPAddr(
net.IPv4(byte(ip&0xff000000>>24), byte(ip&0x00ff0000>>16), byte(ip&0x0000ff00>>8), byte(ip&0x000000ff)),
uint16(ipp.Port),
)
}
func NewUDPAddrFromLH6(ipp *Ip6AndPort) *udpAddr {
2021-04-01 17:23:31 +02:00
return NewUDPAddr(lhIp6ToIp(ipp), uint16(ipp.Port))
2019-11-19 18:00:20 +01:00
}
func (lh *LightHouse) LhUpdateWorker(f EncWriter) {
if lh.amLighthouse || lh.interval == 0 {
2019-11-19 18:00:20 +01:00
return
}
for {
lh.SendUpdate(f)
time.Sleep(time.Second * time.Duration(lh.interval))
}
}
2019-11-19 18:00:20 +01:00
func (lh *LightHouse) SendUpdate(f EncWriter) {
2021-04-01 00:32:02 +02:00
var v4 []*Ip4AndPort
2021-03-19 02:37:24 +01:00
var v6 []*Ip6AndPort
2019-11-19 18:00:20 +01:00
2021-03-26 15:46:30 +01:00
for _, e := range *localIps(lh.l, lh.localAllowList) {
2021-04-01 17:23:31 +02:00
if ip4 := e.To4(); ip4 != nil && ipMaskContains(lh.myVpnIp, lh.myVpnZeros, ip2int(ip4)) {
2021-04-01 00:32:02 +02:00
continue
}
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
// Only add IPs that aren't my VPN/tun IP
if ip := e.To4(); ip != nil {
v4 = append(v4, NewIp4AndPort(e, lh.nebulaPort))
} else {
v6 = append(v6, NewIp6AndPort(e, lh.nebulaPort))
2019-11-19 18:00:20 +01:00
}
}
m := &NebulaMeta{
Type: NebulaMeta_HostUpdateNotification,
Details: &NebulaMetaDetails{
2021-04-01 17:23:31 +02:00
VpnIp: lh.myVpnIp,
2021-04-01 00:32:02 +02:00
Ip4AndPorts: v4,
2021-03-19 02:37:24 +01:00
Ip6AndPorts: v6,
},
}
lh.metricTx(NebulaMeta_HostUpdateNotification, int64(len(lh.lighthouses)))
nb := make([]byte, 12, 12)
out := make([]byte, mtu)
2021-04-01 17:23:31 +02:00
mm, err := proto.Marshal(m)
if err != nil && lh.l.Level >= logrus.DebugLevel {
lh.l.WithError(err).Error("Error while marshaling for lighthouse update")
return
}
for vpnIp := range lh.lighthouses {
f.SendMessageToVpnIp(lightHouse, 0, vpnIp, mm, nb, out)
2019-11-19 18:00:20 +01:00
}
}
type LightHouseHandler struct {
lh *LightHouse
nb []byte
out []byte
2021-04-01 00:32:02 +02:00
pb []byte
meta *NebulaMeta
2021-04-01 00:32:02 +02:00
l *logrus.Logger
}
func (lh *LightHouse) NewRequestHandler() *LightHouseHandler {
lhh := &LightHouseHandler{
lh: lh,
nb: make([]byte, 12, 12),
out: make([]byte, mtu),
2021-04-01 00:32:02 +02:00
l: lh.l,
pb: make([]byte, mtu),
meta: &NebulaMeta{
Details: &NebulaMetaDetails{},
},
}
return lhh
}
2021-04-01 00:32:02 +02:00
func (lh *LightHouse) metricRx(t NebulaMeta_MessageType, i int64) {
lh.metrics.Rx(NebulaMessageType(t), 0, i)
}
func (lh *LightHouse) metricTx(t NebulaMeta_MessageType, i int64) {
lh.metrics.Tx(NebulaMessageType(t), 0, i)
}
// This method is similar to Reset(), but it re-uses the pointer structs
// so that we don't have to re-allocate them
func (lhh *LightHouseHandler) resetMeta() *NebulaMeta {
details := lhh.meta.Details
lhh.meta.Reset()
2021-04-01 00:32:02 +02:00
// Keep the array memory around
details.Ip4AndPorts = details.Ip4AndPorts[:0]
details.Ip6AndPorts = details.Ip6AndPorts[:0]
lhh.meta.Details = details
return lhh.meta
}
2021-04-01 00:32:02 +02:00
//TODO: do we need c here?
func (lhh *LightHouseHandler) HandleRequest(rAddr *udpAddr, vpnIp uint32, p []byte, w EncWriter) {
n := lhh.resetMeta()
2021-04-01 00:32:02 +02:00
err := n.Unmarshal(p)
2019-11-19 18:00:20 +01:00
if err != nil {
2021-04-01 00:32:02 +02:00
lhh.l.WithError(err).WithField("vpnIp", IntIp(vpnIp)).WithField("udpAddr", rAddr).
2019-11-19 18:00:20 +01:00
Error("Failed to unmarshal lighthouse packet")
//TODO: send recv_error?
return
}
if n.Details == nil {
2021-04-01 00:32:02 +02:00
lhh.l.WithField("vpnIp", IntIp(vpnIp)).WithField("udpAddr", rAddr).
2019-11-19 18:00:20 +01:00
Error("Invalid lighthouse update")
//TODO: send recv_error?
return
}
2021-04-01 00:32:02 +02:00
lhh.lh.metricRx(n.Type, 1)
2019-11-19 18:00:20 +01:00
switch n.Type {
case NebulaMeta_HostQuery:
2021-04-01 00:32:02 +02:00
lhh.handleHostQuery(n, vpnIp, rAddr, w)
2019-11-19 18:00:20 +01:00
2021-04-01 00:32:02 +02:00
case NebulaMeta_HostQueryReply:
lhh.handleHostQueryReply(n, vpnIp)
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
case NebulaMeta_HostUpdateNotification:
lhh.handleHostUpdateNotification(n, vpnIp)
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
case NebulaMeta_HostMovedNotification:
case NebulaMeta_HostPunchNotification:
lhh.handleHostPunchNotification(n, vpnIp, w)
}
}
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
func (lhh *LightHouseHandler) handleHostQuery(n *NebulaMeta, vpnIp uint32, addr *udpAddr, w EncWriter) {
// Exit if we don't answer queries
if !lhh.lh.amLighthouse {
if lhh.l.Level >= logrus.DebugLevel {
lhh.l.Debugln("I don't answer queries, but received from: ", addr)
2019-11-19 18:00:20 +01:00
}
2021-04-01 00:32:02 +02:00
return
}
2019-11-19 18:00:20 +01:00
2021-04-01 00:32:02 +02:00
//TODO: we can DRY this further
reqVpnIP := n.Details.VpnIp
//TODO: Maybe instead of marshalling into n we marshal into a new `r` to not nuke our current request data
//TODO: If we use a lock on cache we can avoid holding it on lh.addrMap and keep things moving better
found, ln, err := lhh.lh.queryAndPrepMessage(n.Details.VpnIp, func(cache *ip4And6) (int, error) {
n = lhh.resetMeta()
n.Type = NebulaMeta_HostQueryReply
n.Details.VpnIp = reqVpnIP
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
lhh.coalesceAnswers(cache, n)
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
return n.MarshalTo(lhh.pb)
})
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
if !found {
return
}
2019-11-19 18:00:20 +01:00
2021-04-01 00:32:02 +02:00
if err != nil {
lhh.l.WithError(err).WithField("vpnIp", IntIp(vpnIp)).Error("Failed to marshal lighthouse host query reply")
return
}
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
lhh.lh.metricTx(NebulaMeta_HostQueryReply, 1)
w.SendMessageToVpnIp(lightHouse, 0, vpnIp, lhh.pb[:ln], lhh.nb, lhh.out[:0])
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
// This signals the other side to punch some zero byte udp packets
found, ln, err = lhh.lh.queryAndPrepMessage(vpnIp, func(cache *ip4And6) (int, error) {
n = lhh.resetMeta()
n.Type = NebulaMeta_HostPunchNotification
n.Details.VpnIp = vpnIp
lhh.coalesceAnswers(cache, n)
return n.MarshalTo(lhh.pb)
})
if !found {
return
}
if err != nil {
lhh.l.WithError(err).WithField("vpnIp", IntIp(vpnIp)).Error("Failed to marshal lighthouse host was queried for")
return
}
lhh.lh.metricTx(NebulaMeta_HostPunchNotification, 1)
w.SendMessageToVpnIp(lightHouse, 0, reqVpnIP, lhh.pb[:ln], lhh.nb, lhh.out[:0])
}
func (lhh *LightHouseHandler) coalesceAnswers(cache *ip4And6, n *NebulaMeta) {
n.Details.Ip4AndPorts = append(n.Details.Ip4AndPorts, cache.v4...)
n.Details.Ip4AndPorts = append(n.Details.Ip4AndPorts, cache.learnedV4...)
n.Details.Ip6AndPorts = append(n.Details.Ip6AndPorts, cache.v6...)
n.Details.Ip6AndPorts = append(n.Details.Ip6AndPorts, cache.learnedV6...)
}
func (lhh *LightHouseHandler) handleHostQueryReply(n *NebulaMeta, vpnIp uint32) {
if !lhh.lh.IsLighthouseIP(vpnIp) {
return
}
// We can't just slam the responses in as they may come from multiple lighthouses and we should coalesce the answers
for _, to := range n.Details.Ip4AndPorts {
lhh.lh.addRemoteV4(n.Details.VpnIp, to, false, false)
}
for _, to := range n.Details.Ip6AndPorts {
lhh.lh.addRemoteV6(n.Details.VpnIp, to, false, false)
}
// Non-blocking attempt to trigger, skip if it would block
select {
case lhh.lh.handshakeTrigger <- n.Details.VpnIp:
default:
}
}
func (lhh *LightHouseHandler) handleHostUpdateNotification(n *NebulaMeta, vpnIp uint32) {
if !lhh.lh.amLighthouse {
if lhh.l.Level >= logrus.DebugLevel {
lhh.l.Debugln("I am not a lighthouse, do not take host updates: ", vpnIp)
2019-11-19 18:00:20 +01:00
}
2021-04-01 00:32:02 +02:00
return
}
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
//Simple check that the host sent this not someone else
if n.Details.VpnIp != vpnIp {
if lhh.l.Level >= logrus.DebugLevel {
lhh.l.WithField("vpnIp", IntIp(vpnIp)).WithField("answer", IntIp(n.Details.VpnIp)).Debugln("Host sent invalid update")
2019-11-19 18:00:20 +01:00
}
2021-04-01 00:32:02 +02:00
return
}
2019-11-19 18:00:20 +01:00
2021-04-01 00:32:02 +02:00
lhh.lh.Lock()
defer lhh.lh.Unlock()
2021-04-01 17:23:31 +02:00
am := lhh.lh.unlockedGetAddrs(vpnIp)
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
//TODO: other note on a lock for am so we can release more quickly and lock our real unit of change which is far less contended
2019-11-19 18:00:20 +01:00
2021-04-01 00:32:02 +02:00
// We don't accumulate addresses being told to us
am.v4 = am.v4[:0]
am.v6 = am.v6[:0]
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
for _, v := range n.Details.Ip4AndPorts {
if lhh.lh.unlockedShouldAddV4(am.v4, v) {
am.v4 = append(am.v4, v)
2019-11-19 18:00:20 +01:00
}
2021-04-01 00:32:02 +02:00
}
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
for _, v := range n.Details.Ip6AndPorts {
if lhh.lh.unlockedShouldAddV6(am.v6, v) {
am.v6 = append(am.v6, v)
}
}
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
// We prefer the first n addresses if we got too big
if len(am.v4) > MaxRemotes {
am.v4 = am.v4[:MaxRemotes]
}
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
if len(am.v6) > MaxRemotes {
am.v6 = am.v6[:MaxRemotes]
}
}
2021-03-19 02:37:24 +01:00
2021-04-01 00:32:02 +02:00
func (lhh *LightHouseHandler) handleHostPunchNotification(n *NebulaMeta, vpnIp uint32, w EncWriter) {
if !lhh.lh.IsLighthouseIP(vpnIp) {
return
}
empty := []byte{0}
punch := func(vpnPeer *udpAddr) {
if vpnPeer == nil {
return
2021-03-19 02:37:24 +01:00
}
2021-04-01 00:32:02 +02:00
go func() {
time.Sleep(lhh.lh.punchDelay)
lhh.lh.metricHolepunchTx.Inc(1)
lhh.lh.punchConn.WriteTo(empty, vpnPeer)
}()
if lhh.l.Level >= logrus.DebugLevel {
//TODO: lacking the ip we are actually punching on, old: l.Debugf("Punching %s on %d for %s", IntIp(a.Ip), a.Port, IntIp(n.Details.VpnIp))
lhh.l.Debugf("Punching on %d for %s", vpnPeer.Port, IntIp(n.Details.VpnIp))
2019-11-19 18:00:20 +01:00
}
}
2021-04-01 00:32:02 +02:00
for _, a := range n.Details.Ip4AndPorts {
punch(NewUDPAddrFromLH4(a))
}
2021-04-01 00:32:02 +02:00
for _, a := range n.Details.Ip6AndPorts {
punch(NewUDPAddrFromLH6(a))
}
2019-11-19 18:00:20 +01:00
2021-04-01 00:32:02 +02:00
// This sends a nebula test packet to the host trying to contact us. In the case
// of a double nat or other difficult scenario, this may help establish
// a tunnel.
if lhh.lh.punchBack {
go func() {
time.Sleep(time.Second * 5)
if lhh.l.Level >= logrus.DebugLevel {
lhh.l.Debugf("Sending a nebula test packet to vpn ip %s", IntIp(n.Details.VpnIp))
}
//NOTE: we have to allocate a new output buffer here since we are spawning a new goroutine
// for each punchBack packet. We should move this into a timerwheel or a single goroutine
// managed by a channel.
w.SendMessageToVpnIp(test, testRequest, n.Details.VpnIp, []byte(""), make([]byte, 12, 12), make([]byte, mtu))
}()
2019-11-19 18:00:20 +01:00
}
}
2021-04-01 00:32:02 +02:00
func TransformLHReplyToUdpAddrs(ips *ip4And6) []*udpAddr {
addrs := make([]*udpAddr, len(ips.v4)+len(ips.v6)+len(ips.learnedV4)+len(ips.learnedV6))
i := 0
2019-11-19 18:00:20 +01:00
2021-04-01 00:32:02 +02:00
for _, v := range ips.learnedV4 {
addrs[i] = NewUDPAddrFromLH4(v)
i++
2019-11-19 18:00:20 +01:00
}
2021-04-01 00:32:02 +02:00
for _, v := range ips.v4 {
addrs[i] = NewUDPAddrFromLH4(v)
i++
}
for _, v := range ips.learnedV6 {
addrs[i] = NewUDPAddrFromLH6(v)
i++
}
for _, v := range ips.v6 {
addrs[i] = NewUDPAddrFromLH6(v)
i++
}
return addrs
2019-11-19 18:00:20 +01:00
}
2021-04-01 17:23:31 +02:00
// ipMaskContains checks if testIp is contained by ip after applying a cidr
// zeros is 32 - bits from net.IPMask.Size()
func ipMaskContains(ip uint32, zeros uint32, testIp uint32) bool {
return (testIp^ip)>>zeros == 0
}