nebula/hostmap.go

853 lines
22 KiB
Go
Raw Normal View History

2019-11-19 18:00:20 +01:00
package nebula
import (
"encoding/json"
"errors"
"fmt"
"net"
"sync"
"sync/atomic"
2019-11-19 18:00:20 +01:00
"time"
"github.com/rcrowley/go-metrics"
"github.com/sirupsen/logrus"
"github.com/slackhq/nebula/cert"
)
//const ProbeLen = 100
const PromoteEvery = 1000
const MaxRemotes = 10
// How long we should prevent roaming back to the previous IP.
// This helps prevent flapping due to packets already in flight
2021-03-01 17:14:34 +01:00
const RoamingSuppressSeconds = 2
2019-11-19 18:00:20 +01:00
type HostMap struct {
sync.RWMutex //Because we concurrently read and write to our maps
name string
Indexes map[uint32]*HostInfo
RemoteIndexes map[uint32]*HostInfo
2019-11-19 18:00:20 +01:00
Hosts map[uint32]*HostInfo
preferredRanges []*net.IPNet
vpnCIDR *net.IPNet
defaultRoute uint32
2019-12-12 17:34:17 +01:00
unsafeRoutes *CIDRTree
metricsEnabled bool
2019-11-19 18:00:20 +01:00
}
type HostInfo struct {
sync.RWMutex
2019-11-19 18:00:20 +01:00
remote *udpAddr
Remotes []*HostInfoDest
promoteCounter uint32
ConnectionState *ConnectionState
handshakeStart time.Time
HandshakeReady bool
HandshakeCounter int
HandshakeComplete bool
HandshakePacket map[uint8][]byte
packetStore []*cachedPacket
remoteIndexId uint32
localIndexId uint32
hostId uint32
recvError int
2019-12-12 17:34:17 +01:00
remoteCidr *CIDRTree
2019-11-19 18:00:20 +01:00
// lastRebindCount is the other side of Interface.rebindCount, if these values don't match then we need to ask LH
// for a punch from the remote end of this tunnel. The goal being to prime their conntrack for our traffic just like
// with a handshake
lastRebindCount int8
2019-11-19 18:00:20 +01:00
lastRoam time.Time
lastRoamRemote *udpAddr
}
type cachedPacket struct {
messageType NebulaMessageType
messageSubType NebulaMessageSubType
callback packetCallback
packet []byte
}
type packetCallback func(t NebulaMessageType, st NebulaMessageSubType, h *HostInfo, p, nb, out []byte)
type HostInfoDest struct {
addr *udpAddr
2019-11-19 18:00:20 +01:00
//probes [ProbeLen]bool
probeCounter int
}
type Probe struct {
Addr *net.UDPAddr
Counter int
}
func NewHostMap(name string, vpnCIDR *net.IPNet, preferredRanges []*net.IPNet) *HostMap {
h := map[uint32]*HostInfo{}
i := map[uint32]*HostInfo{}
r := map[uint32]*HostInfo{}
2019-11-19 18:00:20 +01:00
m := HostMap{
name: name,
Indexes: i,
RemoteIndexes: r,
2019-11-19 18:00:20 +01:00
Hosts: h,
preferredRanges: preferredRanges,
vpnCIDR: vpnCIDR,
defaultRoute: 0,
2019-12-12 17:34:17 +01:00
unsafeRoutes: NewCIDRTree(),
2019-11-19 18:00:20 +01:00
}
return &m
}
// UpdateStats takes a name and reports host and index counts to the stats collection system
func (hm *HostMap) EmitStats(name string) {
hm.RLock()
hostLen := len(hm.Hosts)
indexLen := len(hm.Indexes)
remoteIndexLen := len(hm.RemoteIndexes)
2019-11-19 18:00:20 +01:00
hm.RUnlock()
metrics.GetOrRegisterGauge("hostmap."+name+".hosts", nil).Update(int64(hostLen))
metrics.GetOrRegisterGauge("hostmap."+name+".indexes", nil).Update(int64(indexLen))
metrics.GetOrRegisterGauge("hostmap."+name+".remoteIndexes", nil).Update(int64(remoteIndexLen))
2019-11-19 18:00:20 +01:00
}
func (hm *HostMap) GetIndexByVpnIP(vpnIP uint32) (uint32, error) {
hm.RLock()
if i, ok := hm.Hosts[vpnIP]; ok {
index := i.localIndexId
hm.RUnlock()
return index, nil
}
hm.RUnlock()
return 0, errors.New("vpn IP not found")
}
func (hm *HostMap) Add(ip uint32, hostinfo *HostInfo) {
hm.Lock()
hm.Hosts[ip] = hostinfo
hm.Unlock()
}
func (hm *HostMap) AddVpnIP(vpnIP uint32) *HostInfo {
h := &HostInfo{}
hm.RLock()
if _, ok := hm.Hosts[vpnIP]; !ok {
hm.RUnlock()
h = &HostInfo{
Remotes: []*HostInfoDest{},
promoteCounter: 0,
hostId: vpnIP,
HandshakePacket: make(map[uint8][]byte, 0),
}
hm.Lock()
hm.Hosts[vpnIP] = h
hm.Unlock()
return h
} else {
h = hm.Hosts[vpnIP]
hm.RUnlock()
return h
}
}
func (hm *HostMap) DeleteVpnIP(vpnIP uint32) {
hm.Lock()
delete(hm.Hosts, vpnIP)
if len(hm.Hosts) == 0 {
hm.Hosts = map[uint32]*HostInfo{}
}
hm.Unlock()
if l.Level >= logrus.DebugLevel {
l.WithField("hostMap", m{"mapName": hm.name, "vpnIp": IntIp(vpnIP), "mapTotalSize": len(hm.Hosts)}).
Debug("Hostmap vpnIp deleted")
}
}
// Only used by pendingHostMap when the remote index is not initially known
func (hm *HostMap) addRemoteIndexHostInfo(index uint32, h *HostInfo) {
hm.Lock()
h.remoteIndexId = index
hm.RemoteIndexes[index] = h
hm.Unlock()
if l.Level > logrus.DebugLevel {
l.WithField("hostMap", m{"mapName": hm.name, "indexNumber": index, "mapTotalSize": len(hm.Indexes),
"hostinfo": m{"existing": true, "localIndexId": h.localIndexId, "hostId": IntIp(h.hostId)}}).
Debug("Hostmap remoteIndex added")
}
}
2019-11-19 18:00:20 +01:00
func (hm *HostMap) AddVpnIPHostInfo(vpnIP uint32, h *HostInfo) {
hm.Lock()
h.hostId = vpnIP
hm.Hosts[vpnIP] = h
hm.Indexes[h.localIndexId] = h
hm.RemoteIndexes[h.remoteIndexId] = h
2019-11-19 18:00:20 +01:00
hm.Unlock()
if l.Level > logrus.DebugLevel {
l.WithField("hostMap", m{"mapName": hm.name, "vpnIp": IntIp(vpnIP), "mapTotalSize": len(hm.Hosts),
"hostinfo": m{"existing": true, "localIndexId": h.localIndexId, "hostId": IntIp(h.hostId)}}).
Debug("Hostmap vpnIp added")
}
}
// This is only called in pendingHostmap, to cleanup an inbound handshake
2019-11-19 18:00:20 +01:00
func (hm *HostMap) DeleteIndex(index uint32) {
hm.Lock()
hostinfo, ok := hm.Indexes[index]
if ok {
delete(hm.Indexes, index)
delete(hm.RemoteIndexes, hostinfo.remoteIndexId)
// Check if we have an entry under hostId that matches the same hostinfo
// instance. Clean it up as well if we do.
hostinfo2, ok := hm.Hosts[hostinfo.hostId]
if ok && hostinfo2 == hostinfo {
delete(hm.Hosts, hostinfo.hostId)
}
2019-11-19 18:00:20 +01:00
}
hm.Unlock()
if l.Level >= logrus.DebugLevel {
l.WithField("hostMap", m{"mapName": hm.name, "indexNumber": index, "mapTotalSize": len(hm.Indexes)}).
Debug("Hostmap index deleted")
}
}
// This is used to cleanup on recv_error
func (hm *HostMap) DeleteReverseIndex(index uint32) {
hm.Lock()
hostinfo, ok := hm.RemoteIndexes[index]
if ok {
delete(hm.Indexes, hostinfo.localIndexId)
delete(hm.RemoteIndexes, index)
// Check if we have an entry under hostId that matches the same hostinfo
// instance. Clean it up as well if we do (they might not match in pendingHostmap)
var hostinfo2 *HostInfo
hostinfo2, ok = hm.Hosts[hostinfo.hostId]
if ok && hostinfo2 == hostinfo {
delete(hm.Hosts, hostinfo.hostId)
}
}
hm.Unlock()
if l.Level >= logrus.DebugLevel {
l.WithField("hostMap", m{"mapName": hm.name, "indexNumber": index, "mapTotalSize": len(hm.Indexes)}).
Debug("Hostmap remote index deleted")
}
}
func (hm *HostMap) DeleteHostInfo(hostinfo *HostInfo) {
hm.Lock()
// Check if this same hostId is in the hostmap with a different instance.
// This could happen if we have an entry in the pending hostmap with different
// index values than the one in the main hostmap.
hostinfo2, ok := hm.Hosts[hostinfo.hostId]
if ok && hostinfo2 != hostinfo {
delete(hm.Hosts, hostinfo2.hostId)
delete(hm.Indexes, hostinfo2.localIndexId)
delete(hm.RemoteIndexes, hostinfo2.remoteIndexId)
}
delete(hm.Hosts, hostinfo.hostId)
if len(hm.Hosts) == 0 {
hm.Hosts = map[uint32]*HostInfo{}
}
delete(hm.Indexes, hostinfo.localIndexId)
if len(hm.Indexes) == 0 {
hm.Indexes = map[uint32]*HostInfo{}
}
delete(hm.RemoteIndexes, hostinfo.remoteIndexId)
if len(hm.RemoteIndexes) == 0 {
hm.RemoteIndexes = map[uint32]*HostInfo{}
}
hm.Unlock()
if l.Level >= logrus.DebugLevel {
l.WithField("hostMap", m{"mapName": hm.name, "mapTotalSize": len(hm.Hosts),
"vpnIp": IntIp(hostinfo.hostId), "indexNumber": hostinfo.localIndexId, "remoteIndexNumber": hostinfo.remoteIndexId}).
Debug("Hostmap hostInfo deleted")
}
}
2019-11-19 18:00:20 +01:00
func (hm *HostMap) QueryIndex(index uint32) (*HostInfo, error) {
//TODO: we probably just want ot return bool instead of error, or at least a static error
hm.RLock()
if h, ok := hm.Indexes[index]; ok {
hm.RUnlock()
return h, nil
} else {
hm.RUnlock()
return nil, errors.New("unable to find index")
}
}
func (hm *HostMap) QueryReverseIndex(index uint32) (*HostInfo, error) {
hm.RLock()
if h, ok := hm.RemoteIndexes[index]; ok {
hm.RUnlock()
return h, nil
} else {
hm.RUnlock()
return nil, fmt.Errorf("unable to find reverse index or connectionstate nil in %s hostmap", hm.name)
2019-11-19 18:00:20 +01:00
}
}
func (hm *HostMap) AddRemote(vpnIp uint32, remote *udpAddr) *HostInfo {
hm.Lock()
i, v := hm.Hosts[vpnIp]
if v {
2021-03-19 02:37:24 +01:00
i.AddRemote(remote)
2019-11-19 18:00:20 +01:00
} else {
i = &HostInfo{
Remotes: []*HostInfoDest{NewHostInfoDest(remote)},
promoteCounter: 0,
hostId: vpnIp,
HandshakePacket: make(map[uint8][]byte, 0),
}
i.remote = i.Remotes[0].addr
hm.Hosts[vpnIp] = i
l.WithField("hostMap", m{"mapName": hm.name, "vpnIp": IntIp(vpnIp), "udpAddr": remote, "mapTotalSize": len(hm.Hosts)}).
Debug("Hostmap remote ip added")
}
i.ForcePromoteBest(hm.preferredRanges)
hm.Unlock()
return i
}
func (hm *HostMap) QueryVpnIP(vpnIp uint32) (*HostInfo, error) {
return hm.queryVpnIP(vpnIp, nil)
}
// PromoteBestQueryVpnIP will attempt to lazily switch to the best remote every
// `PromoteEvery` calls to this function for a given host.
func (hm *HostMap) PromoteBestQueryVpnIP(vpnIp uint32, ifce *Interface) (*HostInfo, error) {
return hm.queryVpnIP(vpnIp, ifce)
}
func (hm *HostMap) queryVpnIP(vpnIp uint32, promoteIfce *Interface) (*HostInfo, error) {
hm.RLock()
if h, ok := hm.Hosts[vpnIp]; ok {
if promoteIfce != nil {
h.TryPromoteBest(hm.preferredRanges, promoteIfce)
}
//fmt.Println(h.remote)
hm.RUnlock()
return h, nil
} else {
//return &net.UDPAddr{}, nil, errors.New("Unable to find host")
hm.RUnlock()
/*
if lightHouse != nil {
lightHouse.Query(vpnIp)
return nil, errors.New("Unable to find host")
}
*/
return nil, errors.New("unable to find host")
}
}
2019-12-12 17:34:17 +01:00
func (hm *HostMap) queryUnsafeRoute(ip uint32) uint32 {
r := hm.unsafeRoutes.MostSpecificContains(ip)
if r != nil {
return r.(uint32)
} else {
return 0
}
}
// We already have the hm Lock when this is called, so make sure to not call
// any other methods that might try to grab it again
func (hm *HostMap) addHostInfo(hostinfo *HostInfo, f *Interface) {
remoteCert := hostinfo.ConnectionState.peerCert
ip := ip2int(remoteCert.Details.Ips[0].IP)
2019-11-19 18:00:20 +01:00
f.lightHouse.AddRemoteAndReset(ip, hostinfo.remote)
if f.serveDns {
dnsR.Add(remoteCert.Details.Name+".", remoteCert.Details.Ips[0].IP.String())
2019-11-19 18:00:20 +01:00
}
hm.Hosts[hostinfo.hostId] = hostinfo
hm.Indexes[hostinfo.localIndexId] = hostinfo
hm.RemoteIndexes[hostinfo.remoteIndexId] = hostinfo
2019-11-19 18:00:20 +01:00
if l.Level >= logrus.DebugLevel {
l.WithField("hostMap", m{"mapName": hm.name, "vpnIp": IntIp(hostinfo.hostId), "mapTotalSize": len(hm.Hosts),
"hostinfo": m{"existing": true, "localIndexId": hostinfo.localIndexId, "hostId": IntIp(hostinfo.hostId)}}).
Debug("Hostmap vpnIp added")
2019-11-19 18:00:20 +01:00
}
}
func (hm *HostMap) ClearRemotes(vpnIP uint32) {
hm.Lock()
i := hm.Hosts[vpnIP]
if i == nil {
hm.Unlock()
return
}
i.remote = nil
i.Remotes = nil
hm.Unlock()
}
func (hm *HostMap) SetDefaultRoute(ip uint32) {
hm.defaultRoute = ip
}
func (hm *HostMap) PunchList() []*udpAddr {
var list []*udpAddr
hm.RLock()
for _, v := range hm.Hosts {
for _, r := range v.Remotes {
list = append(list, r.addr)
}
// if h, ok := hm.Hosts[vpnIp]; ok {
// hm.Hosts[vpnIp].PromoteBest(hm.preferredRanges, false)
//fmt.Println(h.remote)
// }
}
hm.RUnlock()
return list
}
func (hm *HostMap) Punchy(conn *udpConn) {
var metricsTxPunchy metrics.Counter
if hm.metricsEnabled {
metricsTxPunchy = metrics.GetOrRegisterCounter("messages.tx.punchy", nil)
} else {
metricsTxPunchy = metrics.NilCounter{}
}
2021-03-19 02:37:24 +01:00
b := []byte{1}
2019-11-19 18:00:20 +01:00
for {
for _, addr := range hm.PunchList() {
metricsTxPunchy.Inc(1)
2021-03-19 02:37:24 +01:00
conn.WriteTo(b, addr)
2019-11-19 18:00:20 +01:00
}
time.Sleep(time.Second * 30)
}
}
2019-12-12 17:34:17 +01:00
func (hm *HostMap) addUnsafeRoutes(routes *[]route) {
for _, r := range *routes {
l.WithField("route", r.route).WithField("via", r.via).Warn("Adding UNSAFE Route")
2019-12-12 17:34:17 +01:00
hm.unsafeRoutes.AddCIDR(r.route, ip2int(*r.via))
}
}
2019-11-19 18:00:20 +01:00
func (i *HostInfo) MarshalJSON() ([]byte, error) {
return json.Marshal(m{
"remote": i.remote,
"remotes": i.Remotes,
"promote_counter": i.promoteCounter,
"connection_state": i.ConnectionState,
"handshake_start": i.handshakeStart,
"handshake_ready": i.HandshakeReady,
"handshake_counter": i.HandshakeCounter,
"handshake_complete": i.HandshakeComplete,
"handshake_packet": i.HandshakePacket,
"packet_store": i.packetStore,
"remote_index": i.remoteIndexId,
"local_index": i.localIndexId,
"host_id": int2ip(i.hostId),
"receive_errors": i.recvError,
"last_roam": i.lastRoam,
"last_roam_remote": i.lastRoamRemote,
})
}
func (i *HostInfo) BindConnectionState(cs *ConnectionState) {
i.ConnectionState = cs
}
func (i *HostInfo) TryPromoteBest(preferredRanges []*net.IPNet, ifce *Interface) {
if i.remote == nil {
i.ForcePromoteBest(preferredRanges)
return
}
if atomic.AddUint32(&i.promoteCounter, 1)&PromoteEvery == 0 {
2019-11-19 18:00:20 +01:00
// return early if we are already on a preferred remote
2021-03-19 02:37:24 +01:00
rIP := i.remote.IP
2019-11-19 18:00:20 +01:00
for _, l := range preferredRanges {
if l.Contains(rIP) {
return
}
}
// We re-query the lighthouse periodically while sending packets, so
// check for new remotes in our local lighthouse cache
ips := ifce.lightHouse.QueryCache(i.hostId)
for _, ip := range ips {
i.AddRemote(ip)
}
best, preferred := i.getBestRemote(preferredRanges)
if preferred && !best.Equals(i.remote) {
// Try to send a test packet to that host, this should
// cause it to detect a roaming event and switch remotes
ifce.send(test, testRequest, i.ConnectionState, i, best, []byte(""), make([]byte, 12, 12), make([]byte, mtu))
}
}
}
func (i *HostInfo) ForcePromoteBest(preferredRanges []*net.IPNet) {
best, _ := i.getBestRemote(preferredRanges)
if best != nil {
i.remote = best
}
}
func (i *HostInfo) getBestRemote(preferredRanges []*net.IPNet) (best *udpAddr, preferred bool) {
if len(i.Remotes) > 0 {
for _, r := range i.Remotes {
2021-03-19 02:37:24 +01:00
rIP := r.addr.IP
2019-11-19 18:00:20 +01:00
for _, l := range preferredRanges {
if l.Contains(rIP) {
return r.addr, true
}
}
if best == nil || !PrivateIP(rIP) {
best = r.addr
}
/*
for _, r := range i.Remotes {
// Must have > 80% probe success to be considered.
//fmt.Println("GRADE:", r.addr.IP, r.Grade())
if r.Grade() > float64(.8) {
if localToMe.Contains(r.addr.IP) == true {
best = r.addr
break
//i.remote = i.Remotes[c].addr
} else {
//}
}
*/
}
return best, false
}
return nil, false
}
// rotateRemote will move remote to the next ip in the list of remote ips for this host
// This is different than PromoteBest in that what is algorithmically best may not actually work.
// Only known use case is when sending a stage 0 handshake.
// It may be better to just send stage 0 handshakes to all known ips and sort it out in the receiver.
func (i *HostInfo) rotateRemote() {
// We have 0, can't rotate
if len(i.Remotes) < 1 {
return
}
if i.remote == nil {
i.remote = i.Remotes[0].addr
return
}
// We want to look at all but the very last entry since that is handled at the end
for x := 0; x < len(i.Remotes)-1; x++ {
// Find our current position and move to the next one in the list
if i.Remotes[x].addr.Equals(i.remote) {
i.remote = i.Remotes[x+1].addr
return
}
}
// Our current position was likely the last in the list, start over at 0
i.remote = i.Remotes[0].addr
}
func (i *HostInfo) cachePacket(t NebulaMessageType, st NebulaMessageSubType, packet []byte, f packetCallback) {
//TODO: return the error so we can log with more context
if len(i.packetStore) < 100 {
tempPacket := make([]byte, len(packet))
copy(tempPacket, packet)
//l.WithField("trace", string(debug.Stack())).Error("Caching packet", tempPacket)
i.packetStore = append(i.packetStore, &cachedPacket{t, st, f, tempPacket})
if l.Level >= logrus.DebugLevel {
i.logger().
WithField("length", len(i.packetStore)).
WithField("stored", true).
Debugf("Packet store")
}
2019-11-19 18:00:20 +01:00
} else if l.Level >= logrus.DebugLevel {
i.logger().
2019-11-19 18:00:20 +01:00
WithField("length", len(i.packetStore)).
WithField("stored", false).
Debugf("Packet store")
}
}
// handshakeComplete will set the connection as ready to communicate, as well as flush any stored packets
func (i *HostInfo) handshakeComplete() {
//TODO: I'm not certain the distinction between handshake complete and ConnectionState being ready matters because:
//TODO: HandshakeComplete means send stored packets and ConnectionState.ready means we are ready to send
//TODO: if the transition from HandhsakeComplete to ConnectionState.ready happens all within this function they are identical
i.ConnectionState.queueLock.Lock()
i.HandshakeComplete = true
//TODO: this should be managed by the handshake state machine to set it based on how many handshake were seen.
// Clamping it to 2 gets us out of the woods for now
atomic.StoreUint64(&i.ConnectionState.atomicMessageCounter, 2)
if l.Level >= logrus.DebugLevel {
i.logger().Debugf("Sending %d stored packets", len(i.packetStore))
}
if len(i.packetStore) > 0 {
nb := make([]byte, 12, 12)
out := make([]byte, mtu)
for _, cp := range i.packetStore {
cp.callback(cp.messageType, cp.messageSubType, i, cp.packet, nb, out)
}
2019-11-19 18:00:20 +01:00
}
2019-11-19 18:00:20 +01:00
i.packetStore = make([]*cachedPacket, 0)
i.ConnectionState.ready = true
i.ConnectionState.queueLock.Unlock()
i.ConnectionState.certState = nil
}
func (i *HostInfo) RemoteUDPAddrs() []*udpAddr {
var addrs []*udpAddr
for _, r := range i.Remotes {
addrs = append(addrs, r.addr)
}
return addrs
}
func (i *HostInfo) GetCert() *cert.NebulaCertificate {
if i.ConnectionState != nil {
return i.ConnectionState.peerCert
}
return nil
}
2021-03-19 02:37:24 +01:00
func (i *HostInfo) AddRemote(remote *udpAddr) *udpAddr {
2019-11-19 18:00:20 +01:00
//add := true
for _, r := range i.Remotes {
if r.addr.Equals(remote) {
return r.addr
//add = false
}
}
// Trim this down if necessary
if len(i.Remotes) > MaxRemotes {
i.Remotes = i.Remotes[len(i.Remotes)-MaxRemotes:]
}
2021-03-19 02:37:24 +01:00
r := NewHostInfoDest(remote)
i.Remotes = append(i.Remotes, r)
return r.addr
2019-11-19 18:00:20 +01:00
//l.Debugf("Added remote %s for vpn ip", remote)
}
2021-03-19 02:37:24 +01:00
func (i *HostInfo) SetRemote(remote *udpAddr) {
2019-11-19 18:00:20 +01:00
i.remote = i.AddRemote(remote)
}
func (i *HostInfo) ClearRemotes() {
i.remote = nil
i.Remotes = []*HostInfoDest{}
}
func (i *HostInfo) ClearConnectionState() {
i.ConnectionState = nil
}
func (i *HostInfo) RecvErrorExceeded() bool {
if i.recvError < 3 {
i.recvError += 1
return false
}
return true
}
2019-12-12 17:34:17 +01:00
func (i *HostInfo) CreateRemoteCIDR(c *cert.NebulaCertificate) {
if len(c.Details.Ips) == 1 && len(c.Details.Subnets) == 0 {
// Simple case, no CIDRTree needed
return
}
2019-12-12 17:34:17 +01:00
remoteCidr := NewCIDRTree()
for _, ip := range c.Details.Ips {
remoteCidr.AddCIDR(&net.IPNet{IP: ip.IP, Mask: net.IPMask{255, 255, 255, 255}}, struct{}{})
}
for _, n := range c.Details.Subnets {
remoteCidr.AddCIDR(n, struct{}{})
}
i.remoteCidr = remoteCidr
}
func (i *HostInfo) logger() *logrus.Entry {
if i == nil {
return logrus.NewEntry(l)
}
li := l.WithField("vpnIp", IntIp(i.hostId))
if connState := i.ConnectionState; connState != nil {
if peerCert := connState.peerCert; peerCert != nil {
li = li.WithField("certName", peerCert.Details.Name)
}
}
return li
}
2019-11-19 18:00:20 +01:00
//########################
func NewHostInfoDest(addr *udpAddr) *HostInfoDest {
i := &HostInfoDest{
2021-03-19 02:37:24 +01:00
addr: addr.Copy(),
2019-11-19 18:00:20 +01:00
}
return i
}
func (hid *HostInfoDest) MarshalJSON() ([]byte, error) {
return json.Marshal(m{
"address": hid.addr,
"probe_count": hid.probeCounter,
})
}
/*
func (hm *HostMap) DebugRemotes(vpnIp uint32) string {
s := "\n"
for _, h := range hm.Hosts {
for _, r := range h.Remotes {
s += fmt.Sprintf("%s : %d ## %v\n", r.addr.IP.String(), r.addr.Port, r.probes)
}
}
return s
}
func (d *HostInfoDest) Grade() float64 {
c1 := ProbeLen
for n := len(d.probes) - 1; n >= 0; n-- {
if d.probes[n] == true {
c1 -= 1
}
}
return float64(c1) / float64(ProbeLen)
}
func (d *HostInfoDest) Grade() (float64, float64, float64) {
c1 := ProbeLen
c2 := ProbeLen / 2
c2c := ProbeLen - ProbeLen/2
c3 := ProbeLen / 5
c3c := ProbeLen - ProbeLen/5
for n := len(d.probes) - 1; n >= 0; n-- {
if d.probes[n] == true {
c1 -= 1
if n >= c2c {
c2 -= 1
if n >= c3c {
c3 -= 1
}
}
}
//if n >= d {
}
return float64(c3) / float64(ProbeLen/5), float64(c2) / float64(ProbeLen/2), float64(c1) / float64(ProbeLen)
//return float64(c1) / float64(ProbeLen), float64(c2) / float64(ProbeLen/2), float64(c3) / float64(ProbeLen/5)
}
func (i *HostInfo) HandleReply(addr *net.UDPAddr, counter int) {
for _, r := range i.Remotes {
if r.addr.IP.Equal(addr.IP) && r.addr.Port == addr.Port {
r.ProbeReceived(counter)
}
}
}
func (i *HostInfo) Probes() []*Probe {
p := []*Probe{}
for _, d := range i.Remotes {
p = append(p, &Probe{Addr: d.addr, Counter: d.Probe()})
}
return p
}
func (d *HostInfoDest) Probe() int {
//d.probes = append(d.probes, true)
d.probeCounter++
d.probes[d.probeCounter%ProbeLen] = true
return d.probeCounter
//return d.probeCounter
}
func (d *HostInfoDest) ProbeReceived(probeCount int) {
if probeCount >= (d.probeCounter - ProbeLen) {
//fmt.Println("PROBE WORKED", probeCount)
//fmt.Println(d.addr, d.Grade())
d.probes[probeCount%ProbeLen] = false
}
}
*/
// Utility functions
Add lighthouse.{remoteAllowList,localAllowList} (#217) These settings make it possible to blacklist / whitelist IP addresses that are used for remote connections. `lighthouse.remoteAllowList` filters which remote IPs are allow when fetching from the lighthouse (or, if you are the lighthouse, which IPs you store and forward to querying hosts). By default, any remote IPs are allowed. You can provide CIDRs here with `true` to allow and `false` to deny. The most specific CIDR rule applies to each remote. If all rules are "allow", the default will be "deny", and vice-versa. If both "allow" and "deny" rules are present, then you MUST set a rule for "0.0.0.0/0" as the default. lighthouse: remoteAllowList: # Example to block IPs from this subnet from being used for remote IPs. "172.16.0.0/12": false # A more complicated example, allow public IPs but only private IPs from a specific subnet "0.0.0.0/0": true "10.0.0.0/8": false "10.42.42.0/24": true `lighthouse.localAllowList` has the same logic as above, but it applies to the local addresses we advertise to the lighthouse. Additionally, you can specify an `interfaces` map of regular expressions to match against interface names. The regexp must match the entire name. All interface rules must be either true or false (and the default rule will be the inverse). CIDR rules are matched after interface name rules. Default is all local IP addresses. lighthouse: localAllowList: # Example to blacklist docker interfaces. interfaces: 'docker.*': false # Example to only advertise IPs in this subnet to the lighthouse. "10.0.0.0/8": true
2020-04-08 21:36:43 +02:00
func localIps(allowList *AllowList) *[]net.IP {
2019-11-19 18:00:20 +01:00
//FIXME: This function is pretty garbage
var ips []net.IP
ifaces, _ := net.Interfaces()
for _, i := range ifaces {
Add lighthouse.{remoteAllowList,localAllowList} (#217) These settings make it possible to blacklist / whitelist IP addresses that are used for remote connections. `lighthouse.remoteAllowList` filters which remote IPs are allow when fetching from the lighthouse (or, if you are the lighthouse, which IPs you store and forward to querying hosts). By default, any remote IPs are allowed. You can provide CIDRs here with `true` to allow and `false` to deny. The most specific CIDR rule applies to each remote. If all rules are "allow", the default will be "deny", and vice-versa. If both "allow" and "deny" rules are present, then you MUST set a rule for "0.0.0.0/0" as the default. lighthouse: remoteAllowList: # Example to block IPs from this subnet from being used for remote IPs. "172.16.0.0/12": false # A more complicated example, allow public IPs but only private IPs from a specific subnet "0.0.0.0/0": true "10.0.0.0/8": false "10.42.42.0/24": true `lighthouse.localAllowList` has the same logic as above, but it applies to the local addresses we advertise to the lighthouse. Additionally, you can specify an `interfaces` map of regular expressions to match against interface names. The regexp must match the entire name. All interface rules must be either true or false (and the default rule will be the inverse). CIDR rules are matched after interface name rules. Default is all local IP addresses. lighthouse: localAllowList: # Example to blacklist docker interfaces. interfaces: 'docker.*': false # Example to only advertise IPs in this subnet to the lighthouse. "10.0.0.0/8": true
2020-04-08 21:36:43 +02:00
allow := allowList.AllowName(i.Name)
l.WithField("interfaceName", i.Name).WithField("allow", allow).Debug("localAllowList.AllowName")
if !allow {
continue
}
2019-11-19 18:00:20 +01:00
addrs, _ := i.Addrs()
for _, addr := range addrs {
var ip net.IP
switch v := addr.(type) {
case *net.IPNet:
//continue
ip = v.IP
case *net.IPAddr:
ip = v.IP
}
2021-03-19 02:37:24 +01:00
//TODO: Filtering out link local for now, this is probably the most correct thing
//TODO: Would be nice to filter out SLAAC MAC based ips as well
if ip.IsLoopback() == false && !ip.IsLinkLocalUnicast() {
allow := allowList.Allow(ip)
Add lighthouse.{remoteAllowList,localAllowList} (#217) These settings make it possible to blacklist / whitelist IP addresses that are used for remote connections. `lighthouse.remoteAllowList` filters which remote IPs are allow when fetching from the lighthouse (or, if you are the lighthouse, which IPs you store and forward to querying hosts). By default, any remote IPs are allowed. You can provide CIDRs here with `true` to allow and `false` to deny. The most specific CIDR rule applies to each remote. If all rules are "allow", the default will be "deny", and vice-versa. If both "allow" and "deny" rules are present, then you MUST set a rule for "0.0.0.0/0" as the default. lighthouse: remoteAllowList: # Example to block IPs from this subnet from being used for remote IPs. "172.16.0.0/12": false # A more complicated example, allow public IPs but only private IPs from a specific subnet "0.0.0.0/0": true "10.0.0.0/8": false "10.42.42.0/24": true `lighthouse.localAllowList` has the same logic as above, but it applies to the local addresses we advertise to the lighthouse. Additionally, you can specify an `interfaces` map of regular expressions to match against interface names. The regexp must match the entire name. All interface rules must be either true or false (and the default rule will be the inverse). CIDR rules are matched after interface name rules. Default is all local IP addresses. lighthouse: localAllowList: # Example to blacklist docker interfaces. interfaces: 'docker.*': false # Example to only advertise IPs in this subnet to the lighthouse. "10.0.0.0/8": true
2020-04-08 21:36:43 +02:00
l.WithField("localIp", ip).WithField("allow", allow).Debug("localAllowList.Allow")
if !allow {
continue
}
2019-11-19 18:00:20 +01:00
ips = append(ips, ip)
}
}
}
return &ips
}
func PrivateIP(ip net.IP) bool {
2021-03-19 02:37:24 +01:00
//TODO: Private for ipv6 or just let it ride?
2019-11-19 18:00:20 +01:00
private := false
_, private24BitBlock, _ := net.ParseCIDR("10.0.0.0/8")
_, private20BitBlock, _ := net.ParseCIDR("172.16.0.0/12")
_, private16BitBlock, _ := net.ParseCIDR("192.168.0.0/16")
private = private24BitBlock.Contains(ip) || private20BitBlock.Contains(ip) || private16BitBlock.Contains(ip)
return private
}