terraform/internal/addrs/move_endpoint_module.go

275 lines
10 KiB
Go
Raw Normal View History

package addrs
import (
"fmt"
"strings"
"github.com/hashicorp/terraform/internal/tfdiags"
)
// MoveEndpointInModule annotates a MoveEndpoint with the address of the
// module where it was declared, which is the form we use for resolving
// whether move statements chain from or are nested within other move
// statements.
type MoveEndpointInModule struct {
// SourceRange is the location of the physical endpoint address
// in configuration, if this MoveEndpoint was decoded from a
// configuration expresson.
SourceRange tfdiags.SourceRange
// The internals are unexported here because, as with MoveEndpoint,
// we're somewhat abusing AbsMoveable here to represent an address
// relative to the module, rather than as an absolute address.
// Conceptually, the following two fields represent a matching pattern
// for AbsMoveables where the elements of "module" behave as
// ModuleInstanceStep values with a wildcard instance key, because
// a moved block in a module affects all instances of that module.
// Unlike MoveEndpoint, relSubject in this case can be any of the
// address types that implement AbsMoveable.
module Module
relSubject AbsMoveable
}
func (e *MoveEndpointInModule) ObjectKind() MoveEndpointKind {
return absMoveableEndpointKind(e.relSubject)
}
// String produces a string representation of the object matching pattern
// represented by the reciever.
//
// Since there is no direct syntax for representing such an object matching
// pattern, this function uses a splat-operator-like representation to stand
// in for the wildcard instance keys.
func (e *MoveEndpointInModule) String() string {
if e == nil {
return ""
}
var buf strings.Builder
for _, name := range e.module {
buf.WriteString("module.")
buf.WriteString(name)
buf.WriteString("[*].")
}
buf.WriteString(e.relSubject.String())
// For consistency we'll also use the splat-like wildcard syntax to
// represent the final step being either a resource or module call
// rather than an instance, so we can more easily distinguish the two
// in the string representation.
switch e.relSubject.(type) {
case AbsModuleCall, AbsResource:
buf.WriteString("[*]")
}
return buf.String()
}
// SelectsModule returns true if the reciever directly selects either
// the given module or a resource nested directly inside that module.
//
// This is a good function to use to decide which modules in a state
// to consider when processing a particular move statement. For a
// module move the given module itself is what will move, while a
// resource move indicates that we should search each of the resources in
// the given module to see if they match.
func (e *MoveEndpointInModule) SelectsModule(addr ModuleInstance) bool {
// In order to match the given module path should be at least as
// long as the path to the module where the move endpoint was defined.
if len(addr) < len(e.module) {
return false
}
containerPart := addr[:len(e.module)]
relPart := addr[len(e.module):]
// The names of all of the steps that align with e.module must match,
// though the instance keys are wildcards for this part.
for i := range e.module {
if containerPart[i].Name != e.module[i] {
return false
}
}
// The remaining module address steps must match both name and key.
// The logic for all of these is similar but we will retrieve the
// module address differently for each type.
var relMatch ModuleInstance
switch relAddr := e.relSubject.(type) {
case ModuleInstance:
relMatch = relAddr
case AbsModuleCall:
// This one requires a little more fuss because the call effectively
// slices in two the final step of the module address.
if len(relPart) != len(relAddr.Module)+1 {
return false
}
callPart := relPart[len(relPart)-1]
if callPart.Name != relAddr.Call.Name {
return false
}
case AbsResource:
relMatch = relAddr.Module
case AbsResourceInstance:
relMatch = relAddr.Module
default:
panic(fmt.Sprintf("unhandled relative address type %T", relAddr))
}
if len(relPart) != len(relMatch) {
return false
}
for i := range relMatch {
if relPart[i] != relMatch[i] {
return false
}
}
return true
}
// CanChainFrom returns true if the reciever describes an address that could
// potentially select an object that the other given address could select.
//
// In other words, this decides whether the move chaining rule applies, if
// the reciever is the "to" from one statement and the other given address
// is the "from" of another statement.
func (e *MoveEndpointInModule) CanChainFrom(other *MoveEndpointInModule) bool {
// TODO: implement
return false
}
// NestedWithin returns true if the reciever describes an address that is
// contained within one of the objects that the given other address could
// select.
func (e *MoveEndpointInModule) NestedWithin(other *MoveEndpointInModule) bool {
// TODO: implement
return false
}
// MoveDestination considers a an address representing a module
// instance in the context of source and destination move endpoints and then,
// if the module address matches the from endpoint, returns the corresponding
// new module address that the object should move to.
//
// MoveDestination will return false in its second return value if the receiver
// doesn't match fromMatch, indicating that the given move statement doesn't
// apply to this object.
//
// Both of the given endpoints must be from the same move statement and thus
// must have matching object types. If not, MoveDestination will panic.
func (m ModuleInstance) MoveDestination(fromMatch, toMatch *MoveEndpointInModule) (ModuleInstance, bool) {
// NOTE: This implementation assumes the invariant that fromMatch and
// toMatch both belong to the same configuration statement, and thus they
// will both have the same address type and the same declaration module.
// The root module instance is not itself moveable.
if m.IsRoot() {
return nil, false
}
// The two endpoints must either be module call or module instance
// addresses, or else this statement can never match.
if fromMatch.ObjectKind() != MoveEndpointModule {
return nil, false
}
// The given module instance must have a prefix that matches the
// declaration module of the two endpoints.
if len(fromMatch.module) > len(m) {
return nil, false // too short to possibly match
}
for i := range fromMatch.module {
if fromMatch.module[i] != m[i].Name {
return nil, false // this step doesn't match
}
}
// The rest of our work will be against the part of the reciever that's
// relative to the declaration module. mRel is a weird abuse of
// ModuleInstance that represents a relative module address, similar to
// what we do for MoveEndpointInModule.relSubject.
mPrefix, mRel := m[:len(fromMatch.module)], m[len(fromMatch.module):]
// Our next goal is to split mRel into two parts: the match (if any) and
// the suffix. Our result will then replace the match with the replacement
// in toMatch while preserving the prefix and suffix.
var mSuffix, mNewMatch ModuleInstance
switch relSubject := fromMatch.relSubject.(type) {
case ModuleInstance:
if len(relSubject) > len(mRel) {
return nil, false // too short to possibly match
}
for i := range relSubject {
if relSubject[i] != mRel[i] {
return nil, false // this step doesn't match
}
}
// If we get to here then we've found a match. Since the statement
// addresses are already themselves ModuleInstance fragments we can
// just slice out the relevant parts.
mNewMatch = toMatch.relSubject.(ModuleInstance)
mSuffix = mRel[len(relSubject):]
case AbsModuleCall:
// The module instance part of relSubject must be a prefix of
// mRel, and mRel must be at least one step longer to account for
// the call step itself.
if len(relSubject.Module) > len(mRel)-1 {
return nil, false
}
for i := range relSubject.Module {
if relSubject.Module[i] != mRel[i] {
return nil, false // this step doesn't match
}
}
// The call name must also match the next step of mRel, after
// the relSubject.Module prefix.
callStep := mRel[len(relSubject.Module)]
if callStep.Name != relSubject.Call.Name {
return nil, false
}
// If we get to here then we've found a match. We need to construct
// a new mNewMatch that's an instance of the "new" relSubject with
// the same key as our call.
mNewMatch = toMatch.relSubject.(AbsModuleCall).Instance(callStep.InstanceKey)
mSuffix = mRel[len(relSubject.Module)+1:]
default:
panic("invalid address type for module-kind move endpoint")
}
ret := make(ModuleInstance, 0, len(mPrefix)+len(mNewMatch)+len(mSuffix))
ret = append(ret, mPrefix...)
ret = append(ret, mNewMatch...)
ret = append(ret, mSuffix...)
return ret, true
}
// MoveDestination considers a an address representing a resource
// in the context of source and destination move endpoints and then,
// if the resource address matches the from endpoint, returns the corresponding
// new resource address that the object should move to.
//
// MoveDestination will return false in its second return value if the receiver
// doesn't match fromMatch, indicating that the given move statement doesn't
// apply to this object.
//
// Both of the given endpoints must be from the same move statement and thus
// must have matching object types. If not, MoveDestination will panic.
func (r AbsResource) MoveDestination(fromMatch, toMatch *MoveEndpointInModule) (AbsResource, bool) {
return AbsResource{}, false
}
// MoveDestination considers a an address representing a resource
// instance in the context of source and destination move endpoints and then,
// if the instance address matches the from endpoint, returns the corresponding
// new instance address that the object should move to.
//
// MoveDestination will return false in its second return value if the receiver
// doesn't match fromMatch, indicating that the given move statement doesn't
// apply to this object.
//
// Both of the given endpoints must be from the same move statement and thus
// must have matching object types. If not, MoveDestination will panic.
func (r AbsResourceInstance) MoveDestination(fromMatch, toMatch *MoveEndpointInModule) (AbsResourceInstance, bool) {
return AbsResourceInstance{}, false
}