Merge pull request #15905 from hashicorp/b-remove-xmlpath

deps: Remove xmlpath from dependencies
This commit is contained in:
Jake Champlin 2017-08-25 14:36:10 -04:00 committed by GitHub
commit 46bc77ff9a
5 changed files with 0 additions and 1160 deletions

View File

@ -1,185 +0,0 @@
This software is licensed under the LGPLv3, included below.
As a special exception to the GNU Lesser General Public License version 3
("LGPL3"), the copyright holders of this Library give you permission to
convey to a third party a Combined Work that links statically or dynamically
to this Library without providing any Minimal Corresponding Source or
Minimal Application Code as set out in 4d or providing the installation
information set out in section 4e, provided that you comply with the other
provisions of LGPL3 and provided that you meet, for the Application the
terms and conditions of the license(s) which apply to the Application.
Except as stated in this special exception, the provisions of LGPL3 will
continue to comply in full to this Library. If you modify this Library, you
may apply this exception to your version of this Library, but you are not
obliged to do so. If you do not wish to do so, delete this exception
statement from your version. This exception does not (and cannot) modify any
license terms which apply to the Application, with which you must still
comply.
GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.
"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.
A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".
The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:
a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license
document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:
a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.
c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.
1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.
e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

View File

@ -1,95 +0,0 @@
// Package xmlpath implements a strict subset of the XPath specification for the Go language.
//
// The XPath specification is available at:
//
// http://www.w3.org/TR/xpath
//
// Path expressions supported by this package are in the following format,
// with all components being optional:
//
// /axis-name::node-test[predicate]/axis-name::node-test[predicate]
//
// At the moment, xmlpath is compatible with the XPath specification
// to the following extent:
//
// - All axes are supported ("child", "following-sibling", etc)
// - All abbreviated forms are supported (".", "//", etc)
// - All node types except for namespace are supported
// - Predicates are restricted to [N], [path], and [path=literal] forms
// - Only a single predicate is supported per path step
// - Namespaces are experimentally supported
// - Richer expressions
//
// For example, assuming the following document:
//
// <library>
// <!-- Great book. -->
// <book id="b0836217462" available="true">
// <isbn>0836217462</isbn>
// <title lang="en">Being a Dog Is a Full-Time Job</title>
// <quote>I'd dog paddle the deepest ocean.</quote>
// <author id="CMS">
// <?echo "go rocks"?>
// <name>Charles M Schulz</name>
// <born>1922-11-26</born>
// <dead>2000-02-12</dead>
// </author>
// <character id="PP">
// <name>Peppermint Patty</name>
// <born>1966-08-22</born>
// <qualification>bold, brash and tomboyish</qualification>
// </character>
// <character id="Snoopy">
// <name>Snoopy</name>
// <born>1950-10-04</born>
// <qualification>extroverted beagle</qualification>
// </character>
// </book>
// </library>
//
// The following examples are valid path expressions, and the first
// match has the indicated value:
//
// /library/book/isbn => "0836217462"
// library/*/isbn => "0836217462"
// /library/book/../book/./isbn => "0836217462"
// /library/book/character[2]/name => "Snoopy"
// /library/book/character[born='1950-10-04']/name => "Snoopy"
// /library/book//node()[@id='PP']/name => "Peppermint Patty"
// //book[author/@id='CMS']/title => "Being a Dog Is a Full-Time Job"},
// /library/book/preceding::comment() => " Great book. "
//
// To run an expression, compile it, and then apply the compiled path to any
// number of context nodes, from one or more parsed xml documents:
//
// path := xmlpath.MustCompile("/library/book/isbn")
// root, err := xmlpath.Parse(file)
// if err != nil {
// log.Fatal(err)
// }
// if value, ok := path.String(root); ok {
// fmt.Println("Found:", value)
// }
//
// To use xmlpath with namespaces, it is required to give the supported set of namespace
// when compiling:
//
//
// var namespaces = []xmlpath.Namespace {
// { "s", "http://www.w3.org/2003/05/soap-envelope" },
// { "a", "http://schemas.xmlsoap.org/ws/2004/08/addressing" },
// }
// path, err := xmlpath.CompileWithNamespace("/s:Header/a:To", namespaces)
// if err != nil {
// log.Fatal(err)
// }
// root, err := xmlpath.Parse(file)
// if err != nil {
// log.Fatal(err)
// }
// if value, ok := path.String(root); ok {
// fmt.Println("Found:", value)
// }
//
package xmlpath

View File

@ -1,233 +0,0 @@
package xmlpath
import (
"encoding/xml"
"io"
)
// Node is an item in an xml tree that was compiled to
// be processed via xml paths. A node may represent:
//
// - An element in the xml document (<body>)
// - An attribute of an element in the xml document (href="...")
// - A comment in the xml document (<!--...-->)
// - A processing instruction in the xml document (<?...?>)
// - Some text within the xml document
//
type Node struct {
kind nodeKind
name xml.Name
attr string
text []byte
nodes []Node
pos int
end int
up *Node
down []*Node
}
type nodeKind int
const (
anyNode nodeKind = iota
startNode
endNode
attrNode
textNode
commentNode
procInstNode
)
// String returns the string value of node.
//
// The string value of a node is:
//
// - For element nodes, the concatenation of all text nodes within the element.
// - For text nodes, the text itself.
// - For attribute nodes, the attribute value.
// - For comment nodes, the text within the comment delimiters.
// - For processing instruction nodes, the content of the instruction.
//
func (node *Node) String() string {
if node.kind == attrNode {
return node.attr
}
return string(node.Bytes())
}
// Bytes returns the string value of node as a byte slice.
// See Node.String for a description of what the string value of a node is.
func (node *Node) Bytes() []byte {
if node.kind == attrNode {
return []byte(node.attr)
}
if node.kind != startNode {
return node.text
}
var text []byte
for i := node.pos; i < node.end; i++ {
if node.nodes[i].kind == textNode {
text = append(text, node.nodes[i].text...)
}
}
return text
}
// equals returns whether the string value of node is equal to s,
// without allocating memory.
func (node *Node) equals(s string) bool {
if node.kind == attrNode {
return s == node.attr
}
if node.kind != startNode {
if len(s) != len(node.text) {
return false
}
for i := range s {
if s[i] != node.text[i] {
return false
}
}
return true
}
si := 0
for i := node.pos; i < node.end; i++ {
if node.nodes[i].kind == textNode {
for _, c := range node.nodes[i].text {
if si > len(s) {
return false
}
if s[si] != c {
return false
}
si++
}
}
}
return si == len(s)
}
// Parse reads an xml document from r, parses it, and returns its root node.
func Parse(r io.Reader) (*Node, error) {
return ParseDecoder(xml.NewDecoder(r))
}
// ParseHTML reads an HTML-like document from r, parses it, and returns
// its root node.
func ParseHTML(r io.Reader) (*Node, error) {
d := xml.NewDecoder(r)
d.Strict = false
d.AutoClose = xml.HTMLAutoClose
d.Entity = xml.HTMLEntity
return ParseDecoder(d)
}
// ParseDecoder parses the xml document being decoded by d and returns
// its root node.
func ParseDecoder(d *xml.Decoder) (*Node, error) {
var nodes []Node
var text []byte
// The root node.
nodes = append(nodes, Node{kind: startNode})
for {
t, err := d.Token()
if err == io.EOF {
break
}
if err != nil {
return nil, err
}
switch t := t.(type) {
case xml.EndElement:
nodes = append(nodes, Node{
kind: endNode,
})
case xml.StartElement:
nodes = append(nodes, Node{
kind: startNode,
name: t.Name,
})
for _, attr := range t.Attr {
nodes = append(nodes, Node{
kind: attrNode,
name: attr.Name,
attr: attr.Value,
})
}
case xml.CharData:
texti := len(text)
text = append(text, t...)
nodes = append(nodes, Node{
kind: textNode,
text: text[texti : texti+len(t)],
})
case xml.Comment:
texti := len(text)
text = append(text, t...)
nodes = append(nodes, Node{
kind: commentNode,
text: text[texti : texti+len(t)],
})
case xml.ProcInst:
texti := len(text)
text = append(text, t.Inst...)
nodes = append(nodes, Node{
kind: procInstNode,
name: xml.Name{Local: t.Target},
text: text[texti : texti+len(t.Inst)],
})
}
}
// Close the root node.
nodes = append(nodes, Node{kind: endNode})
stack := make([]*Node, 0, len(nodes))
downs := make([]*Node, len(nodes))
downCount := 0
for pos := range nodes {
switch nodes[pos].kind {
case startNode, attrNode, textNode, commentNode, procInstNode:
node := &nodes[pos]
node.nodes = nodes
node.pos = pos
if len(stack) > 0 {
node.up = stack[len(stack)-1]
}
if node.kind == startNode {
stack = append(stack, node)
} else {
node.end = pos + 1
}
case endNode:
node := stack[len(stack)-1]
node.end = pos
stack = stack[:len(stack)-1]
// Compute downs. Doing that here is what enables the
// use of a slice of a contiguous pre-allocated block.
node.down = downs[downCount:downCount]
for i := node.pos + 1; i < node.end; i++ {
if nodes[i].up == node {
switch nodes[i].kind {
case startNode, textNode, commentNode, procInstNode:
node.down = append(node.down, &nodes[i])
downCount++
}
}
}
if len(stack) == 0 {
return node, nil
}
}
}
return nil, io.EOF
}

View File

@ -1,642 +0,0 @@
package xmlpath
import (
"fmt"
"strconv"
"unicode/utf8"
)
// Namespace represents a given XML Namespace
type Namespace struct {
Prefix string
Uri string
}
// Path is a compiled path that can be applied to a context
// node to obtain a matching node set.
// A single Path can be applied concurrently to any number
// of context nodes.
type Path struct {
path string
steps []pathStep
}
// Iter returns an iterator that goes over the list of nodes
// that p matches on the given context.
func (p *Path) Iter(context *Node) *Iter {
iter := Iter{
make([]pathStepState, len(p.steps)),
make([]bool, len(context.nodes)),
}
for i := range p.steps {
iter.state[i].step = &p.steps[i]
}
iter.state[0].init(context)
return &iter
}
// Exists returns whether any nodes match p on the given context.
func (p *Path) Exists(context *Node) bool {
return p.Iter(context).Next()
}
// String returns the string value of the first node matched
// by p on the given context.
//
// See the documentation of Node.String.
func (p *Path) String(context *Node) (s string, ok bool) {
iter := p.Iter(context)
if iter.Next() {
return iter.Node().String(), true
}
return "", false
}
// Bytes returns as a byte slice the string value of the first
// node matched by p on the given context.
//
// See the documentation of Node.String.
func (p *Path) Bytes(node *Node) (b []byte, ok bool) {
iter := p.Iter(node)
if iter.Next() {
return iter.Node().Bytes(), true
}
return nil, false
}
// Iter iterates over node sets.
type Iter struct {
state []pathStepState
seen []bool
}
// Node returns the current node.
// Must only be called after Iter.Next returns true.
func (iter *Iter) Node() *Node {
state := iter.state[len(iter.state)-1]
if state.pos == 0 {
panic("Iter.Node called before Iter.Next")
}
if state.node == nil {
panic("Iter.Node called after Iter.Next false")
}
return state.node
}
// Next iterates to the next node in the set, if any, and
// returns whether there is a node available.
func (iter *Iter) Next() bool {
tip := len(iter.state) - 1
outer:
for {
for !iter.state[tip].next() {
tip--
if tip == -1 {
return false
}
}
for tip < len(iter.state)-1 {
tip++
iter.state[tip].init(iter.state[tip-1].node)
if !iter.state[tip].next() {
tip--
continue outer
}
}
if iter.seen[iter.state[tip].node.pos] {
continue
}
iter.seen[iter.state[tip].node.pos] = true
return true
}
panic("unreachable")
}
type pathStepState struct {
step *pathStep
node *Node
pos int
idx int
aux int
}
func (s *pathStepState) init(node *Node) {
s.node = node
s.pos = 0
s.idx = 0
s.aux = 0
}
func (s *pathStepState) next() bool {
for s._next() {
s.pos++
if s.step.pred == nil {
return true
}
if s.step.pred.bval {
if s.step.pred.path.Exists(s.node) {
return true
}
} else if s.step.pred.path != nil {
iter := s.step.pred.path.Iter(s.node)
for iter.Next() {
if iter.Node().equals(s.step.pred.sval) {
return true
}
}
} else {
if s.step.pred.ival == s.pos {
return true
}
}
}
return false
}
func (s *pathStepState) _next() bool {
if s.node == nil {
return false
}
if s.step.root && s.idx == 0 {
for s.node.up != nil {
s.node = s.node.up
}
}
switch s.step.axis {
case "self":
if s.idx == 0 && s.step.match(s.node) {
s.idx++
return true
}
case "parent":
if s.idx == 0 && s.node.up != nil && s.step.match(s.node.up) {
s.idx++
s.node = s.node.up
return true
}
case "ancestor", "ancestor-or-self":
if s.idx == 0 && s.step.axis == "ancestor-or-self" {
s.idx++
if s.step.match(s.node) {
return true
}
}
for s.node.up != nil {
s.node = s.node.up
s.idx++
if s.step.match(s.node) {
return true
}
}
case "child":
var down []*Node
if s.idx == 0 {
down = s.node.down
} else {
down = s.node.up.down
}
for s.idx < len(down) {
node := down[s.idx]
s.idx++
if s.step.match(node) {
s.node = node
return true
}
}
case "descendant", "descendant-or-self":
if s.idx == 0 {
s.idx = s.node.pos
s.aux = s.node.end
if s.step.axis == "descendant" {
s.idx++
}
}
for s.idx < s.aux {
node := &s.node.nodes[s.idx]
s.idx++
if node.kind == attrNode {
continue
}
if s.step.match(node) {
s.node = node
return true
}
}
case "following":
if s.idx == 0 {
s.idx = s.node.end
}
for s.idx < len(s.node.nodes) {
node := &s.node.nodes[s.idx]
s.idx++
if node.kind == attrNode {
continue
}
if s.step.match(node) {
s.node = node
return true
}
}
case "following-sibling":
var down []*Node
if s.node.up != nil {
down = s.node.up.down
if s.idx == 0 {
for s.idx < len(down) {
node := down[s.idx]
s.idx++
if node == s.node {
break
}
}
}
}
for s.idx < len(down) {
node := down[s.idx]
s.idx++
if s.step.match(node) {
s.node = node
return true
}
}
case "preceding":
if s.idx == 0 {
s.aux = s.node.pos // Detect ancestors.
s.idx = s.node.pos - 1
}
for s.idx >= 0 {
node := &s.node.nodes[s.idx]
s.idx--
if node.kind == attrNode {
continue
}
if node == s.node.nodes[s.aux].up {
s.aux = s.node.nodes[s.aux].up.pos
continue
}
if s.step.match(node) {
s.node = node
return true
}
}
case "preceding-sibling":
var down []*Node
if s.node.up != nil {
down = s.node.up.down
if s.aux == 0 {
s.aux = 1
for s.idx < len(down) {
node := down[s.idx]
s.idx++
if node == s.node {
s.idx--
break
}
}
}
}
for s.idx >= 0 {
node := down[s.idx]
s.idx--
if s.step.match(node) {
s.node = node
return true
}
}
case "attribute":
if s.idx == 0 {
s.idx = s.node.pos + 1
s.aux = s.node.end
}
for s.idx < s.aux {
node := &s.node.nodes[s.idx]
s.idx++
if node.kind != attrNode {
break
}
if s.step.match(node) {
s.node = node
return true
}
}
}
s.node = nil
return false
}
type pathPredicate struct {
path *Path
sval string
ival int
bval bool
}
type pathStep struct {
root bool
axis string
name string
prefix string
uri string
kind nodeKind
pred *pathPredicate
}
func (step *pathStep) match(node *Node) bool {
return node.kind != endNode &&
(step.kind == anyNode || step.kind == node.kind) &&
(step.name == "*" || (node.name.Local == step.name && (node.name.Space != "" && node.name.Space == step.uri || node.name.Space == "")))
}
// MustCompile returns the compiled path, and panics if
// there are any errors.
func MustCompile(path string) *Path {
e, err := Compile(path)
if err != nil {
panic(err)
}
return e
}
// Compile returns the compiled path.
func Compile(path string) (*Path, error) {
c := pathCompiler{path, 0, []Namespace{} }
if path == "" {
return nil, c.errorf("empty path")
}
p, err := c.parsePath()
if err != nil {
return nil, err
}
return p, nil
}
// Compile the path with the knowledge of the given namespaces
func CompileWithNamespace(path string, ns []Namespace) (*Path, error) {
c := pathCompiler{path, 0, ns}
if path == "" {
return nil, c.errorf("empty path")
}
p, err := c.parsePath()
if err != nil {
return nil, err
}
return p, nil
}
type pathCompiler struct {
path string
i int
ns []Namespace
}
func (c *pathCompiler) errorf(format string, args ...interface{}) error {
return fmt.Errorf("compiling xml path %q:%d: %s", c.path, c.i, fmt.Sprintf(format, args...))
}
func (c *pathCompiler) parsePath() (path *Path, err error) {
var steps []pathStep
var start = c.i
for {
step := pathStep{axis: "child"}
if c.i == 0 && c.skipByte('/') {
step.root = true
if len(c.path) == 1 {
step.name = "*"
}
}
if c.peekByte('/') {
step.axis = "descendant-or-self"
step.name = "*"
} else if c.skipByte('@') {
mark := c.i
if !c.skipName() {
return nil, c.errorf("missing name after @")
}
step.axis = "attribute"
step.name = c.path[mark:c.i]
step.kind = attrNode
} else {
mark := c.i
if c.skipName() {
step.name = c.path[mark:c.i]
}
if step.name == "" {
return nil, c.errorf("missing name")
} else if step.name == "*" {
step.kind = startNode
} else if step.name == "." {
step.axis = "self"
step.name = "*"
} else if step.name == ".." {
step.axis = "parent"
step.name = "*"
} else {
if c.skipByte(':') {
if !c.skipByte(':') {
mark = c.i
if c.skipName() {
step.prefix = step.name
step.name = c.path[mark:c.i]
// check prefix
found := false
for _, ns := range c.ns {
if ns.Prefix == step.prefix {
step.uri = ns.Uri
found = true
break
}
}
if !found {
return nil, c.errorf("unknown namespace prefix: %s", step.prefix)
}
} else {
return nil, c.errorf("missing name after namespace prefix")
}
} else {
switch step.name {
case "attribute":
step.kind = attrNode
case "self", "child", "parent":
case "descendant", "descendant-or-self":
case "ancestor", "ancestor-or-self":
case "following", "following-sibling":
case "preceding", "preceding-sibling":
default:
return nil, c.errorf("unsupported axis: %q", step.name)
}
step.axis = step.name
mark = c.i
if !c.skipName() {
return nil, c.errorf("missing name")
}
step.name = c.path[mark:c.i]
}
}
if c.skipByte('(') {
conflict := step.kind != anyNode
switch step.name {
case "node":
// must be anyNode
case "text":
step.kind = textNode
case "comment":
step.kind = commentNode
case "processing-instruction":
step.kind = procInstNode
default:
return nil, c.errorf("unsupported expression: %s()", step.name)
}
if conflict {
return nil, c.errorf("%s() cannot succeed on axis %q", step.name, step.axis)
}
literal, err := c.parseLiteral()
if err == errNoLiteral {
step.name = "*"
} else if err != nil {
return nil, c.errorf("%v", err)
} else if step.kind == procInstNode {
step.name = literal
} else {
return nil, c.errorf("%s() has no arguments", step.name)
}
if !c.skipByte(')') {
return nil, c.errorf("missing )")
}
} else if step.name == "*" && step.kind == anyNode {
step.kind = startNode
}
}
}
if c.skipByte('[') {
step.pred = &pathPredicate{}
if ival, ok := c.parseInt(); ok {
if ival == 0 {
return nil, c.errorf("positions start at 1")
}
step.pred.ival = ival
} else {
path, err := c.parsePath()
if err != nil {
return nil, err
}
if path.path[0] == '-' {
if _, err = strconv.Atoi(path.path); err == nil {
return nil, c.errorf("positions must be positive")
}
}
step.pred.path = path
if c.skipByte('=') {
sval, err := c.parseLiteral()
if err != nil {
return nil, c.errorf("%v", err)
}
step.pred.sval = sval
} else {
step.pred.bval = true
}
}
if !c.skipByte(']') {
return nil, c.errorf("expected ']'")
}
}
steps = append(steps, step)
//fmt.Printf("step: %#v\n", step)
if !c.skipByte('/') {
if (start == 0 || start == c.i) && c.i < len(c.path) {
return nil, c.errorf("unexpected %q", c.path[c.i])
}
return &Path{steps: steps, path: c.path[start:c.i]}, nil
}
}
panic("unreachable")
}
var errNoLiteral = fmt.Errorf("expected a literal string")
func (c *pathCompiler) parseLiteral() (string, error) {
if c.skipByte('"') {
mark := c.i
if !c.skipByteFind('"') {
return "", fmt.Errorf(`missing '"'`)
}
return c.path[mark:c.i-1], nil
}
if c.skipByte('\'') {
mark := c.i
if !c.skipByteFind('\'') {
return "", fmt.Errorf(`missing "'"`)
}
return c.path[mark:c.i-1], nil
}
return "", errNoLiteral
}
func (c *pathCompiler) parseInt() (v int, ok bool) {
mark := c.i
for c.i < len(c.path) && c.path[c.i] >= '0' && c.path[c.i] <= '9' {
v *= 10
v += int(c.path[c.i]) - '0'
c.i++
}
if c.i == mark {
return 0, false
}
return v, true
}
func (c *pathCompiler) skipByte(b byte) bool {
if c.i < len(c.path) && c.path[c.i] == b {
c.i++
return true
}
return false
}
func (c *pathCompiler) skipByteFind(b byte) bool {
for i := c.i; i < len(c.path); i++ {
if c.path[i] == b {
c.i = i+1
return true
}
}
return false
}
func (c *pathCompiler) peekByte(b byte) bool {
return c.i < len(c.path) && c.path[c.i] == b
}
func (c *pathCompiler) skipName() bool {
if c.i >= len(c.path) {
return false
}
if c.path[c.i] == '*' {
c.i++
return true
}
start := c.i
for c.i < len(c.path) && (c.path[c.i] >= utf8.RuneSelf || isNameByte(c.path[c.i])) {
c.i++
}
return c.i > start
}
func isNameByte(c byte) bool {
return 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z' || '0' <= c && c <= '9' || c == '_' || c == '.' || c == '-'
}

5
vendor/vendor.json vendored
View File

@ -1688,11 +1688,6 @@
"revision": "a2df6b1315e6fd5885eb15c67ed259e85854125f",
"revisionTime": "2017-08-14T13:39:27Z"
},
{
"checksumSHA1": "bx+egnFe0OB0BZBcgZcaqsvcmS4=",
"path": "github.com/masterzen/xmlpath",
"revision": "13f4951698adc0fa9c1dda3e275d489a24201161"
},
{
"checksumSHA1": "rCffFCN6TpDAN3Jylyo8RFzhQ9E=",
"path": "github.com/mattn/go-colorable",