remove all unneeded list-based iteration

Make the default walks always use the sets directly, which avoids
repeated copying of every set into a new slice.
This commit is contained in:
James Bardin 2020-01-07 17:28:56 -05:00
parent 26a4de803f
commit 6096371068
3 changed files with 86 additions and 67 deletions

View File

@ -31,13 +31,12 @@ func (g *AcyclicGraph) DirectedGraph() Grapher {
// provided starting Vertex v.
func (g *AcyclicGraph) Ancestors(v Vertex) (Set, error) {
s := make(Set)
start := AsVertexList(g.DownEdges(v))
memoFunc := func(v Vertex, d int) error {
s.Add(v)
return nil
}
if err := g.DepthFirstWalk(start, memoFunc); err != nil {
if err := g.DepthFirstWalk(g.DownEdges(v), memoFunc); err != nil {
return nil, err
}
@ -48,13 +47,12 @@ func (g *AcyclicGraph) Ancestors(v Vertex) (Set, error) {
// provided starting Vertex v.
func (g *AcyclicGraph) Descendents(v Vertex) (Set, error) {
s := make(Set)
start := AsVertexList(g.UpEdges(v))
memoFunc := func(v Vertex, d int) error {
s.Add(v)
return nil
}
if err := g.ReverseDepthFirstWalk(start, memoFunc); err != nil {
if err := g.ReverseDepthFirstWalk(g.UpEdges(v), memoFunc); err != nil {
return nil, err
}
@ -106,11 +104,10 @@ func (g *AcyclicGraph) TransitiveReduction() {
for _, u := range g.Vertices() {
uTargets := g.DownEdges(u)
vs := AsVertexList(g.DownEdges(u))
g.depthFirstWalk(vs, false, func(v Vertex, d int) error {
g.DepthFirstWalk(g.DownEdges(u), func(v Vertex, d int) error {
shared := uTargets.Intersection(g.DownEdges(v))
for _, vPrime := range AsVertexList(shared) {
for _, vPrime := range shared {
g.RemoveEdge(BasicEdge(u, vPrime))
}
@ -187,19 +184,48 @@ type vertexAtDepth struct {
Depth int
}
// depthFirstWalk does a depth-first walk of the graph starting from
// DepthFirstWalk does a depth-first walk of the graph starting from
// the vertices in start.
func (g *AcyclicGraph) DepthFirstWalk(start []Vertex, f DepthWalkFunc) error {
return g.depthFirstWalk(start, true, f)
func (g *AcyclicGraph) DepthFirstWalk(start Set, f DepthWalkFunc) error {
seen := make(map[Vertex]struct{})
frontier := make([]*vertexAtDepth, 0, len(start))
for _, v := range start {
frontier = append(frontier, &vertexAtDepth{
Vertex: v,
Depth: 0,
})
}
for len(frontier) > 0 {
// Pop the current vertex
n := len(frontier)
current := frontier[n-1]
frontier = frontier[:n-1]
// Check if we've seen this already and return...
if _, ok := seen[current.Vertex]; ok {
continue
}
seen[current.Vertex] = struct{}{}
// Visit the current node
if err := f(current.Vertex, current.Depth); err != nil {
return err
}
for _, v := range g.DownEdges(current.Vertex) {
frontier = append(frontier, &vertexAtDepth{
Vertex: v,
Depth: current.Depth + 1,
})
}
}
return nil
}
// This internal method provides the option of not sorting the vertices during
// the walk, which we use for the Transitive reduction.
// Some configurations can lead to fully-connected subgraphs, which makes our
// transitive reduction algorithm O(n^3). This is still passable for the size
// of our graphs, but the additional n^2 sort operations would make this
// uncomputable in a reasonable amount of time.
func (g *AcyclicGraph) depthFirstWalk(start []Vertex, sorted bool, f DepthWalkFunc) error {
// SortedDepthFirstWalk does a depth-first walk of the graph starting from
// the vertices in start, always iterating the nodes in a consistent order.
func (g *AcyclicGraph) SortedDepthFirstWalk(start []Vertex, f DepthWalkFunc) error {
defer g.debug.BeginOperation(typeDepthFirstWalk, "").End("")
seen := make(map[Vertex]struct{})
@ -229,10 +255,7 @@ func (g *AcyclicGraph) depthFirstWalk(start []Vertex, sorted bool, f DepthWalkFu
// Visit targets of this in a consistent order.
targets := AsVertexList(g.DownEdges(current.Vertex))
if sorted {
sort.Sort(byVertexName(targets))
}
sort.Sort(byVertexName(targets))
for _, t := range targets {
frontier = append(frontier, &vertexAtDepth{
@ -245,9 +268,48 @@ func (g *AcyclicGraph) depthFirstWalk(start []Vertex, sorted bool, f DepthWalkFu
return nil
}
// reverseDepthFirstWalk does a depth-first walk _up_ the graph starting from
// ReverseDepthFirstWalk does a depth-first walk _up_ the graph starting from
// the vertices in start.
func (g *AcyclicGraph) ReverseDepthFirstWalk(start []Vertex, f DepthWalkFunc) error {
func (g *AcyclicGraph) ReverseDepthFirstWalk(start Set, f DepthWalkFunc) error {
seen := make(map[Vertex]struct{})
frontier := make([]*vertexAtDepth, 0, len(start))
for _, v := range start {
frontier = append(frontier, &vertexAtDepth{
Vertex: v,
Depth: 0,
})
}
for len(frontier) > 0 {
// Pop the current vertex
n := len(frontier)
current := frontier[n-1]
frontier = frontier[:n-1]
// Check if we've seen this already and return...
if _, ok := seen[current.Vertex]; ok {
continue
}
seen[current.Vertex] = struct{}{}
for _, t := range g.UpEdges(current.Vertex) {
frontier = append(frontier, &vertexAtDepth{
Vertex: t,
Depth: current.Depth + 1,
})
}
// Visit the current node
if err := f(current.Vertex, current.Depth); err != nil {
return err
}
}
return nil
}
// SortedReverseDepthFirstWalk does a depth-first walk _up_ the graph starting from
// the vertices in start, always iterating the nodes in a consistent order.
func (g *AcyclicGraph) SortedReverseDepthFirstWalk(start []Vertex, f DepthWalkFunc) error {
defer g.debug.BeginOperation(typeReverseDepthFirstWalk, "").End("")
seen := make(map[Vertex]struct{})

View File

@ -345,7 +345,7 @@ func TestAcyclicGraph_ReverseDepthFirstWalk_WithRemoval(t *testing.T) {
var visits []Vertex
var lock sync.Mutex
err := g.ReverseDepthFirstWalk([]Vertex{1}, func(v Vertex, d int) error {
err := g.SortedReverseDepthFirstWalk([]Vertex{1}, func(v Vertex, d int) error {
lock.Lock()
defer lock.Unlock()
visits = append(visits, v)

View File

@ -117,49 +117,6 @@ func TestGraphJSON_basic(t *testing.T) {
}
}
// record some graph transformations, and make sure we get the same graph when
// they're replayed
func TestGraphJSON_basicRecord(t *testing.T) {
var g Graph
var buf bytes.Buffer
g.SetDebugWriter(&buf)
g.Add(1)
g.Add(2)
g.Add(3)
g.Connect(BasicEdge(1, 2))
g.Connect(BasicEdge(1, 3))
g.Connect(BasicEdge(2, 3))
(&AcyclicGraph{g}).TransitiveReduction()
recorded := buf.Bytes()
// the Walk doesn't happen in a determined order, so just count operations
// for now to make sure we wrote stuff out.
if len(bytes.Split(recorded, []byte{'\n'})) != 17 {
t.Fatalf("bad: %s", recorded)
}
original, err := g.MarshalJSON()
if err != nil {
t.Fatal(err)
}
// replay the logs, and marshal the graph back out again
m, err := decodeGraph(bytes.NewReader(buf.Bytes()))
if err != nil {
t.Fatal(err)
}
replayed, err := json.MarshalIndent(m, "", " ")
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(original, replayed) {
t.Fatalf("\noriginal: %s\nreplayed: %s", original, replayed)
}
}
// Verify that Vertex and Edge annotations appear in the debug output
func TestGraphJSON_debugInfo(t *testing.T) {
var g Graph