package schema import ( "fmt" "strconv" ) // FieldReaders are responsible for decoding fields out of data into // the proper typed representation. ResourceData uses this to query data // out of multiple sources: config, state, diffs, etc. type FieldReader interface { ReadField([]string) (FieldReadResult, error) } // FieldReadResult encapsulates all the resulting data from reading // a field. type FieldReadResult struct { // Value is the actual read value. NegValue is the _negative_ value // or the items that should be removed (if they existed). NegValue // doesn't make sense for primitives but is important for any // container types such as maps, sets, lists. Value interface{} ValueProcessed interface{} // Exists is true if the field was found in the data. False means // it wasn't found if there was no error. Exists bool // Computed is true if the field was found but the value // is computed. Computed bool } // ValueOrZero returns the value of this result or the zero value of the // schema type, ensuring a consistent non-nil return value. func (r *FieldReadResult) ValueOrZero(s *Schema) interface{} { if r.Value != nil { return r.Value } return s.ZeroValue() } // addrToSchema finds the final element schema for the given address // and the given schema. It returns all the schemas that led to the final // schema. These are in order of the address (out to in). func addrToSchema(addr []string, schemaMap map[string]*Schema) []*Schema { current := &Schema{ Type: typeObject, Elem: schemaMap, } // If we aren't given an address, then the user is requesting the // full object, so we return the special value which is the full object. if len(addr) == 0 { return []*Schema{current} } result := make([]*Schema, 0, len(addr)) for len(addr) > 0 { k := addr[0] addr = addr[1:] REPEAT: // We want to trim off the first "typeObject" since its not a // real lookup that people do. i.e. []string{"foo"} in a structure // isn't {typeObject, typeString}, its just a {typeString}. if len(result) > 0 || current.Type != typeObject { result = append(result, current) } switch t := current.Type; t { case TypeBool, TypeInt, TypeFloat, TypeString: if len(addr) > 0 { return nil } case TypeList, TypeSet: isIndex := len(addr) > 0 && addr[0] == "#" switch v := current.Elem.(type) { case *Resource: current = &Schema{ Type: typeObject, Elem: v.Schema, } case *Schema: current = v case ValueType: current = &Schema{Type: v} default: // we may not know the Elem type and are just looking for the // index if isIndex { break } if len(addr) == 0 { // we've processed the address, so return what we've // collected return result } if len(addr) == 1 { if _, err := strconv.Atoi(addr[0]); err == nil { // we're indexing a value without a schema. This can // happen if the list is nested in another schema type. // Default to a TypeString like we do with a map current = &Schema{Type: TypeString} break } } return nil } // If we only have one more thing and the next thing // is a #, then we're accessing the index which is always // an int. if isIndex { current = &Schema{Type: TypeInt} break } case TypeMap: if len(addr) > 0 { switch v := current.Elem.(type) { case ValueType: current = &Schema{Type: v} case *Schema: current, _ = current.Elem.(*Schema) default: // maps default to string values. This is all we can have // if this is nested in another list or map. current = &Schema{Type: TypeString} } } case typeObject: // If we're already in the object, then we want to handle Sets // and Lists specially. Basically, their next key is the lookup // key (the set value or the list element). For these scenarios, // we just want to skip it and move to the next element if there // is one. if len(result) > 0 { lastType := result[len(result)-2].Type if lastType == TypeSet || lastType == TypeList { if len(addr) == 0 { break } k = addr[0] addr = addr[1:] } } m := current.Elem.(map[string]*Schema) val, ok := m[k] if !ok { return nil } current = val goto REPEAT } } return result } // readListField is a generic method for reading a list field out of a // a FieldReader. It does this based on the assumption that there is a key // "foo.#" for a list "foo" and that the indexes are "foo.0", "foo.1", etc. // after that point. func readListField( r FieldReader, addr []string, schema *Schema) (FieldReadResult, error) { addrPadded := make([]string, len(addr)+1) copy(addrPadded, addr) addrPadded[len(addrPadded)-1] = "#" // Get the number of elements in the list countResult, err := r.ReadField(addrPadded) if err != nil { return FieldReadResult{}, err } if !countResult.Exists { // No count, means we have no list countResult.Value = 0 } // If we have an empty list, then return an empty list if countResult.Computed || countResult.Value.(int) == 0 { return FieldReadResult{ Value: []interface{}{}, Exists: countResult.Exists, Computed: countResult.Computed, }, nil } // Go through each count, and get the item value out of it result := make([]interface{}, countResult.Value.(int)) for i, _ := range result { is := strconv.FormatInt(int64(i), 10) addrPadded[len(addrPadded)-1] = is rawResult, err := r.ReadField(addrPadded) if err != nil { return FieldReadResult{}, err } if !rawResult.Exists { // This should never happen, because by the time the data // gets to the FieldReaders, all the defaults should be set by // Schema. rawResult.Value = nil } result[i] = rawResult.Value } return FieldReadResult{ Value: result, Exists: true, }, nil } // readObjectField is a generic method for reading objects out of FieldReaders // based on the assumption that building an address of []string{k, FIELD} // will result in the proper field data. func readObjectField( r FieldReader, addr []string, schema map[string]*Schema) (FieldReadResult, error) { result := make(map[string]interface{}) exists := false for field, s := range schema { addrRead := make([]string, len(addr), len(addr)+1) copy(addrRead, addr) addrRead = append(addrRead, field) rawResult, err := r.ReadField(addrRead) if err != nil { return FieldReadResult{}, err } if rawResult.Exists { exists = true } result[field] = rawResult.ValueOrZero(s) } return FieldReadResult{ Value: result, Exists: exists, }, nil } // convert map values to the proper primitive type based on schema.Elem func mapValuesToPrimitive(k string, m map[string]interface{}, schema *Schema) error { elemType, err := getValueType(k, schema) if err != nil { return err } switch elemType { case TypeInt, TypeFloat, TypeBool: for k, v := range m { vs, ok := v.(string) if !ok { continue } v, err := stringToPrimitive(vs, false, &Schema{Type: elemType}) if err != nil { return err } m[k] = v } } return nil } func stringToPrimitive( value string, computed bool, schema *Schema) (interface{}, error) { var returnVal interface{} switch schema.Type { case TypeBool: if value == "" { returnVal = false break } if computed { break } v, err := strconv.ParseBool(value) if err != nil { return nil, err } returnVal = v case TypeFloat: if value == "" { returnVal = 0.0 break } if computed { break } v, err := strconv.ParseFloat(value, 64) if err != nil { return nil, err } returnVal = v case TypeInt: if value == "" { returnVal = 0 break } if computed { break } v, err := strconv.ParseInt(value, 0, 0) if err != nil { return nil, err } returnVal = int(v) case TypeString: returnVal = value default: panic(fmt.Sprintf("Unknown type: %s", schema.Type)) } return returnVal, nil }