package scheduler import ( "fmt" "log" "math/rand" "reflect" "github.com/hashicorp/nomad/nomad/structs" ) // allocTuple is a tuple of the allocation name and potential alloc ID type allocTuple struct { Name string TaskGroup *structs.TaskGroup Alloc *structs.Allocation } // materializeTaskGroups is used to materialize all the task groups // a job requires. This is used to do the count expansion. func materializeTaskGroups(job *structs.Job) map[string]*structs.TaskGroup { out := make(map[string]*structs.TaskGroup) if job == nil { return out } for _, tg := range job.TaskGroups { for i := 0; i < tg.Count; i++ { name := fmt.Sprintf("%s.%s[%d]", job.Name, tg.Name, i) out[name] = tg } } return out } // diffResult is used to return the sets that result from the diff type diffResult struct { place, update, migrate, stop, ignore, lost []allocTuple } func (d *diffResult) GoString() string { return fmt.Sprintf("allocs: (place %d) (update %d) (migrate %d) (stop %d) (ignore %d) (lost %d)", len(d.place), len(d.update), len(d.migrate), len(d.stop), len(d.ignore), len(d.lost)) } func (d *diffResult) Append(other *diffResult) { d.place = append(d.place, other.place...) d.update = append(d.update, other.update...) d.migrate = append(d.migrate, other.migrate...) d.stop = append(d.stop, other.stop...) d.ignore = append(d.ignore, other.ignore...) d.lost = append(d.lost, other.lost...) } // diffAllocs is used to do a set difference between the target allocations // and the existing allocations. This returns 6 sets of results, the list of // named task groups that need to be placed (no existing allocation), the // allocations that need to be updated (job definition is newer), allocs that // need to be migrated (node is draining), the allocs that need to be evicted // (no longer required), those that should be ignored and those that are lost // that need to be replaced (running on a lost node). func diffAllocs(job *structs.Job, taintedNodes map[string]*structs.Node, required map[string]*structs.TaskGroup, allocs []*structs.Allocation) *diffResult { result := &diffResult{} // Scan the existing updates existing := make(map[string]struct{}) for _, exist := range allocs { // Index the existing node name := exist.Name existing[name] = struct{}{} // Check for the definition in the required set tg, ok := required[name] // If not required, we stop the alloc if !ok { result.stop = append(result.stop, allocTuple{ Name: name, TaskGroup: tg, Alloc: exist, }) continue } // If we are on a tainted node, we must migrate if we are a service or // if the batch allocation did not finish if node, ok := taintedNodes[exist.NodeID]; ok { // If the job is batch and finished successfully, the fact that the // node is tainted does not mean it should be migrated or marked as // lost as the work was already successfully finished. However for // service/system jobs, tasks should never complete. The check of // batch type, defends against client bugs. if exist.Job.Type == structs.JobTypeBatch && exist.RanSuccessfully() { goto IGNORE } if node == nil || node.TerminalStatus() { result.lost = append(result.lost, allocTuple{ Name: name, TaskGroup: tg, Alloc: exist, }) } else { // This is the drain case result.migrate = append(result.migrate, allocTuple{ Name: name, TaskGroup: tg, Alloc: exist, }) } continue } // If the definition is updated we need to update if job.JobModifyIndex != exist.Job.JobModifyIndex { result.update = append(result.update, allocTuple{ Name: name, TaskGroup: tg, Alloc: exist, }) continue } // Everything is up-to-date IGNORE: result.ignore = append(result.ignore, allocTuple{ Name: name, TaskGroup: tg, Alloc: exist, }) } // Scan the required groups for name, tg := range required { // Check for an existing allocation _, ok := existing[name] // Require a placement if no existing allocation. If there // is an existing allocation, we would have checked for a potential // update or ignore above. if !ok { result.place = append(result.place, allocTuple{ Name: name, TaskGroup: tg, }) } } return result } // diffSystemAllocs is like diffAllocs however, the allocations in the // diffResult contain the specific nodeID they should be allocated on. func diffSystemAllocs(job *structs.Job, nodes []*structs.Node, taintedNodes map[string]*structs.Node, allocs []*structs.Allocation) *diffResult { // Build a mapping of nodes to all their allocs. nodeAllocs := make(map[string][]*structs.Allocation, len(allocs)) for _, alloc := range allocs { nallocs := append(nodeAllocs[alloc.NodeID], alloc) nodeAllocs[alloc.NodeID] = nallocs } for _, node := range nodes { if _, ok := nodeAllocs[node.ID]; !ok { nodeAllocs[node.ID] = nil } } // Create the required task groups. required := materializeTaskGroups(job) result := &diffResult{} for nodeID, allocs := range nodeAllocs { diff := diffAllocs(job, taintedNodes, required, allocs) // Mark the alloc as being for a specific node. for i := range diff.place { alloc := &diff.place[i] alloc.Alloc = &structs.Allocation{NodeID: nodeID} } // Migrate does not apply to system jobs and instead should be marked as // stop because if a node is tainted, the job is invalid on that node. diff.stop = append(diff.stop, diff.migrate...) diff.migrate = nil result.Append(diff) } return result } // readyNodesInDCs returns all the ready nodes in the given datacenters and a // mapping of each data center to the count of ready nodes. func readyNodesInDCs(state State, dcs []string) ([]*structs.Node, map[string]int, error) { // Index the DCs dcMap := make(map[string]int, len(dcs)) for _, dc := range dcs { dcMap[dc] = 0 } // Scan the nodes var out []*structs.Node iter, err := state.Nodes() if err != nil { return nil, nil, err } for { raw := iter.Next() if raw == nil { break } // Filter on datacenter and status node := raw.(*structs.Node) if node.Status != structs.NodeStatusReady { continue } if node.Drain { continue } if _, ok := dcMap[node.Datacenter]; !ok { continue } out = append(out, node) dcMap[node.Datacenter] += 1 } return out, dcMap, nil } // retryMax is used to retry a callback until it returns success or // a maximum number of attempts is reached. An optional reset function may be // passed which is called after each failed iteration. If the reset function is // set and returns true, the number of attempts is reset back to max. func retryMax(max int, cb func() (bool, error), reset func() bool) error { attempts := 0 for attempts < max { done, err := cb() if err != nil { return err } if done { return nil } // Check if we should reset the number attempts if reset != nil && reset() { attempts = 0 } else { attempts += 1 } } return &SetStatusError{ Err: fmt.Errorf("maximum attempts reached (%d)", max), EvalStatus: structs.EvalStatusFailed, } } // progressMade checks to see if the plan result made allocations or updates. // If the result is nil, false is returned. func progressMade(result *structs.PlanResult) bool { return result != nil && (len(result.NodeUpdate) != 0 || len(result.NodeAllocation) != 0) } // taintedNodes is used to scan the allocations and then check if the // underlying nodes are tainted, and should force a migration of the allocation. // All the nodes returned in the map are tainted. func taintedNodes(state State, allocs []*structs.Allocation) (map[string]*structs.Node, error) { out := make(map[string]*structs.Node) for _, alloc := range allocs { if _, ok := out[alloc.NodeID]; ok { continue } node, err := state.NodeByID(alloc.NodeID) if err != nil { return nil, err } // If the node does not exist, we should migrate if node == nil { out[alloc.NodeID] = nil continue } if structs.ShouldDrainNode(node.Status) || node.Drain { out[alloc.NodeID] = node } } return out, nil } // shuffleNodes randomizes the slice order with the Fisher-Yates algorithm func shuffleNodes(nodes []*structs.Node) { n := len(nodes) for i := n - 1; i > 0; i-- { j := rand.Intn(i + 1) nodes[i], nodes[j] = nodes[j], nodes[i] } } // tasksUpdated does a diff between task groups to see if the // tasks, their drivers, environment variables or config have updated. func tasksUpdated(a, b *structs.TaskGroup) bool { // If the number of tasks do not match, clearly there is an update if len(a.Tasks) != len(b.Tasks) { return true } // Check each task for _, at := range a.Tasks { bt := b.LookupTask(at.Name) if bt == nil { return true } if at.Driver != bt.Driver { return true } if at.User != bt.User { return true } if !reflect.DeepEqual(at.Config, bt.Config) { return true } if !reflect.DeepEqual(at.Env, bt.Env) { return true } if !reflect.DeepEqual(at.Meta, bt.Meta) { return true } if !reflect.DeepEqual(at.Artifacts, bt.Artifacts) { return true } // Inspect the network to see if the dynamic ports are different if len(at.Resources.Networks) != len(bt.Resources.Networks) { return true } for idx := range at.Resources.Networks { an := at.Resources.Networks[idx] bn := bt.Resources.Networks[idx] if an.MBits != bn.MBits { return true } aPorts, bPorts := networkPortMap(an), networkPortMap(bn) if !reflect.DeepEqual(aPorts, bPorts) { return true } } // Inspect the non-network resources if ar, br := at.Resources, bt.Resources; ar.CPU != br.CPU { return true } else if ar.MemoryMB != br.MemoryMB { return true } else if ar.DiskMB != br.DiskMB { return true } else if ar.IOPS != br.IOPS { return true } } return false } // networkPortMap takes a network resource and returns a map of port labels to // values. The value for dynamic ports is disregarded even if it is set. This // makes this function suitable for comparing two network resources for changes. func networkPortMap(n *structs.NetworkResource) map[string]int { m := make(map[string]int, len(n.DynamicPorts)+len(n.ReservedPorts)) for _, p := range n.ReservedPorts { m[p.Label] = p.Value } for _, p := range n.DynamicPorts { m[p.Label] = -1 } return m } // setStatus is used to update the status of the evaluation func setStatus(logger *log.Logger, planner Planner, eval, nextEval, spawnedBlocked *structs.Evaluation, tgMetrics map[string]*structs.AllocMetric, status, desc string, queuedAllocs map[string]int) error { logger.Printf("[DEBUG] sched: %#v: setting status to %s", eval, status) newEval := eval.Copy() newEval.Status = status newEval.StatusDescription = desc newEval.FailedTGAllocs = tgMetrics if nextEval != nil { newEval.NextEval = nextEval.ID } if spawnedBlocked != nil { newEval.BlockedEval = spawnedBlocked.ID } if queuedAllocs != nil { newEval.QueuedAllocations = queuedAllocs } return planner.UpdateEval(newEval) } // inplaceUpdate attempts to update allocations in-place where possible. It // returns the allocs that couldn't be done inplace and then those that could. func inplaceUpdate(ctx Context, eval *structs.Evaluation, job *structs.Job, stack Stack, updates []allocTuple) (destructive, inplace []allocTuple) { n := len(updates) inplaceCount := 0 for i := 0; i < n; i++ { // Get the update update := updates[i] // Check if the task drivers or config has changed, requires // a rolling upgrade since that cannot be done in-place. existing := update.Alloc.Job.LookupTaskGroup(update.TaskGroup.Name) if tasksUpdated(update.TaskGroup, existing) { continue } // Get the existing node node, err := ctx.State().NodeByID(update.Alloc.NodeID) if err != nil { ctx.Logger().Printf("[ERR] sched: %#v failed to get node '%s': %v", eval, update.Alloc.NodeID, err) continue } if node == nil { continue } // Set the existing node as the base set stack.SetNodes([]*structs.Node{node}) // Stage an eviction of the current allocation. This is done so that // the current allocation is discounted when checking for feasability. // Otherwise we would be trying to fit the tasks current resources and // updated resources. After select is called we can remove the evict. ctx.Plan().AppendUpdate(update.Alloc, structs.AllocDesiredStatusStop, allocInPlace, "") // Attempt to match the task group option, _ := stack.Select(update.TaskGroup) // Pop the allocation ctx.Plan().PopUpdate(update.Alloc) // Skip if we could not do an in-place update if option == nil { continue } // Restore the network offers from the existing allocation. // We do not allow network resources (reserved/dynamic ports) // to be updated. This is guarded in taskUpdated, so we can // safely restore those here. for task, resources := range option.TaskResources { existing := update.Alloc.TaskResources[task] resources.Networks = existing.Networks } // Create a shallow copy newAlloc := new(structs.Allocation) *newAlloc = *update.Alloc // Update the allocation newAlloc.EvalID = eval.ID newAlloc.Job = nil // Use the Job in the Plan newAlloc.Resources = nil // Computed in Plan Apply newAlloc.TaskResources = option.TaskResources newAlloc.Metrics = ctx.Metrics() ctx.Plan().AppendAlloc(newAlloc) // Remove this allocation from the slice updates[i], updates[n-1] = updates[n-1], updates[i] i-- n-- inplaceCount++ } if len(updates) > 0 { ctx.Logger().Printf("[DEBUG] sched: %#v: %d in-place updates of %d", eval, inplaceCount, len(updates)) } return updates[:n], updates[n:] } // evictAndPlace is used to mark allocations for evicts and add them to the // placement queue. evictAndPlace modifies both the the diffResult and the // limit. It returns true if the limit has been reached. func evictAndPlace(ctx Context, diff *diffResult, allocs []allocTuple, desc string, limit *int) bool { n := len(allocs) for i := 0; i < n && i < *limit; i++ { a := allocs[i] ctx.Plan().AppendUpdate(a.Alloc, structs.AllocDesiredStatusStop, desc, "") diff.place = append(diff.place, a) } if n <= *limit { *limit -= n return false } *limit = 0 return true } // markLostAndPlace is used to mark allocations as lost and add them to the // placement queue. evictAndPlace modifies both the the diffResult and the // limit. It returns true if the limit has been reached. func markLostAndPlace(ctx Context, diff *diffResult, allocs []allocTuple, desc string, limit *int) bool { n := len(allocs) for i := 0; i < n && i < *limit; i++ { a := allocs[i] ctx.Plan().AppendUpdate(a.Alloc, structs.AllocDesiredStatusStop, desc, structs.AllocClientStatusLost) diff.place = append(diff.place, a) } if n <= *limit { *limit -= n return false } *limit = 0 return true } // tgConstrainTuple is used to store the total constraints of a task group. type tgConstrainTuple struct { // Holds the combined constraints of the task group and all it's sub-tasks. constraints []*structs.Constraint // The set of required drivers within the task group. drivers map[string]struct{} // The combined resources of all tasks within the task group. size *structs.Resources } // taskGroupConstraints collects the constraints, drivers and resources required by each // sub-task to aggregate the TaskGroup totals func taskGroupConstraints(tg *structs.TaskGroup) tgConstrainTuple { c := tgConstrainTuple{ constraints: make([]*structs.Constraint, 0, len(tg.Constraints)), drivers: make(map[string]struct{}), size: new(structs.Resources), } c.constraints = append(c.constraints, tg.Constraints...) for _, task := range tg.Tasks { c.drivers[task.Driver] = struct{}{} c.constraints = append(c.constraints, task.Constraints...) c.size.Add(task.Resources) } return c } // desiredUpdates takes the diffResult as well as the set of inplace and // destructive updates and returns a map of task groups to their set of desired // updates. func desiredUpdates(diff *diffResult, inplaceUpdates, destructiveUpdates []allocTuple) map[string]*structs.DesiredUpdates { desiredTgs := make(map[string]*structs.DesiredUpdates) for _, tuple := range diff.place { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.Place++ } for _, tuple := range diff.stop { name := tuple.Alloc.TaskGroup des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.Stop++ } for _, tuple := range diff.ignore { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.Ignore++ } for _, tuple := range diff.migrate { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.Migrate++ } for _, tuple := range inplaceUpdates { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.InPlaceUpdate++ } for _, tuple := range destructiveUpdates { name := tuple.TaskGroup.Name des, ok := desiredTgs[name] if !ok { des = &structs.DesiredUpdates{} desiredTgs[name] = des } des.DestructiveUpdate++ } return desiredTgs } // adjustQueuedAllocations decrements the number of allocations pending per task // group based on the number of allocations successfully placed func adjustQueuedAllocations(logger *log.Logger, result *structs.PlanResult, queuedAllocs map[string]int) { if result != nil { for _, allocations := range result.NodeAllocation { for _, allocation := range allocations { // Ensure that the allocation is newly created if allocation.CreateIndex != result.AllocIndex { continue } if _, ok := queuedAllocs[allocation.TaskGroup]; ok { queuedAllocs[allocation.TaskGroup] -= 1 } else { logger.Printf("[ERR] sched: allocation %q placed but not in list of unplaced allocations", allocation.TaskGroup) } } } } } // updateNonTerminalAllocsToLost updates the allocations which are in pending/running state on tainted node // to lost func updateNonTerminalAllocsToLost(plan *structs.Plan, tainted map[string]*structs.Node, allocs []*structs.Allocation) { for _, alloc := range allocs { if _, ok := tainted[alloc.NodeID]; ok && alloc.DesiredStatus == structs.AllocDesiredStatusStop && (alloc.ClientStatus == structs.AllocClientStatusRunning || alloc.ClientStatus == structs.AllocClientStatusPending) { plan.AppendUpdate(alloc, structs.AllocDesiredStatusStop, allocLost, structs.AllocClientStatusLost) } } }