// The config package is responsible for loading and validating the // configuration. package config import ( "fmt" "strings" "github.com/hashicorp/terraform/flatmap" "github.com/hashicorp/terraform/helper/multierror" "github.com/mitchellh/mapstructure" ) // Config is the configuration that comes from loading a collection // of Terraform templates. type Config struct { ProviderConfigs []*ProviderConfig Resources []*Resource Variables []*Variable Outputs []*Output // The fields below can be filled in by loaders for validation // purposes. unknownKeys []string } // ProviderConfig is the configuration for a resource provider. // // For example, Terraform needs to set the AWS access keys for the AWS // resource provider. type ProviderConfig struct { Name string RawConfig *RawConfig } // A resource represents a single Terraform resource in the configuration. // A Terraform resource is something that represents some component that // can be created and managed, and has some properties associated with it. type Resource struct { Name string Type string Count int RawConfig *RawConfig Provisioners []*Provisioner DependsOn []string } // Provisioner is a configured provisioner step on a resource. type Provisioner struct { Type string RawConfig *RawConfig ConnInfo *RawConfig } // Variable is a variable defined within the configuration. type Variable struct { Name string Default interface{} Description string } // Output is an output defined within the configuration. An output is // resulting data that is highlighted by Terraform when finished. type Output struct { Name string RawConfig *RawConfig } // VariableType is the type of value a variable is holding, and returned // by the Type() function on variables. type VariableType byte const ( VariableTypeUnknown VariableType = iota VariableTypeString VariableTypeMap ) // ProviderConfigName returns the name of the provider configuration in // the given mapping that maps to the proper provider configuration // for this resource. func ProviderConfigName(t string, pcs []*ProviderConfig) string { lk := "" for _, v := range pcs { k := v.Name if strings.HasPrefix(t, k) && len(k) > len(lk) { lk = k } } return lk } // A unique identifier for this resource. func (r *Resource) Id() string { return fmt.Sprintf("%s.%s", r.Type, r.Name) } // Validate does some basic semantic checking of the configuration. func (c *Config) Validate() error { var errs []error for _, k := range c.unknownKeys { errs = append(errs, fmt.Errorf( "Unknown root level key: %s", k)) } vars := c.allVariables() varMap := make(map[string]*Variable) for _, v := range c.Variables { varMap[v.Name] = v } for _, v := range c.Variables { if v.Type() == VariableTypeUnknown { errs = append(errs, fmt.Errorf( "Variable '%s': must be string or mapping", v.Name)) } } // Check for references to user variables that do not actually // exist and record those errors. for source, vs := range vars { for _, v := range vs { uv, ok := v.(*UserVariable) if !ok { continue } if _, ok := varMap[uv.Name]; !ok { errs = append(errs, fmt.Errorf( "%s: unknown variable referenced: %s", source, uv.Name)) } } } // Check that all references to resources are valid resources := make(map[string]*Resource) dupped := make(map[string]struct{}) for _, r := range c.Resources { if _, ok := resources[r.Id()]; ok { if _, ok := dupped[r.Id()]; !ok { dupped[r.Id()] = struct{}{} errs = append(errs, fmt.Errorf( "%s: resource repeated multiple times", r.Id())) } } resources[r.Id()] = r } dupped = nil // Make sure all dependsOn are valid in resources for n, r := range resources { for _, d := range r.DependsOn { if _, ok := resources[d]; !ok { errs = append(errs, fmt.Errorf( "%s: resource depends on non-existent resource '%s'", n, d)) } } } for source, vs := range vars { for _, v := range vs { rv, ok := v.(*ResourceVariable) if !ok { continue } id := fmt.Sprintf("%s.%s", rv.Type, rv.Name) r, ok := resources[id] if !ok { errs = append(errs, fmt.Errorf( "%s: unknown resource '%s' referenced in variable %s", source, id, rv.FullKey())) continue } // If it is a multi reference and resource has a single // count, it is an error. if r.Count > 1 && !rv.Multi { errs = append(errs, fmt.Errorf( "%s: variable '%s' must specify index for multi-count "+ "resource %s", source, rv.FullKey(), id)) continue } } } // Check that all outputs are valid for _, o := range c.Outputs { invalid := false for k, _ := range o.RawConfig.Raw { if k != "value" { invalid = true break } } if invalid { errs = append(errs, fmt.Errorf( "%s: output should only have 'value' field", o.Name)) } } if len(errs) > 0 { return &multierror.Error{Errors: errs} } return nil } // allVariables is a helper that returns a mapping of all the interpolated // variables within the configuration. This is used to verify references // are valid in the Validate step. func (c *Config) allVariables() map[string][]InterpolatedVariable { result := make(map[string][]InterpolatedVariable) for _, pc := range c.ProviderConfigs { source := fmt.Sprintf("provider config '%s'", pc.Name) for _, v := range pc.RawConfig.Variables { result[source] = append(result[source], v) } } for _, rc := range c.Resources { source := fmt.Sprintf("resource '%s'", rc.Id()) for _, v := range rc.RawConfig.Variables { result[source] = append(result[source], v) } } for _, o := range c.Outputs { source := fmt.Sprintf("output '%s'", o.Name) for _, v := range o.RawConfig.Variables { result[source] = append(result[source], v) } } return result } func (o *Output) mergerName() string { return o.Name } func (o *Output) mergerMerge(m merger) merger { o2 := m.(*Output) result := *o result.Name = o2.Name result.RawConfig = result.RawConfig.merge(o2.RawConfig) return &result } func (c *ProviderConfig) mergerName() string { return c.Name } func (c *ProviderConfig) mergerMerge(m merger) merger { c2 := m.(*ProviderConfig) result := *c result.Name = c2.Name result.RawConfig = result.RawConfig.merge(c2.RawConfig) return &result } func (r *Resource) mergerName() string { return fmt.Sprintf("%s.%s", r.Type, r.Name) } func (r *Resource) mergerMerge(m merger) merger { r2 := m.(*Resource) result := *r result.Name = r2.Name result.Type = r2.Type result.RawConfig = result.RawConfig.merge(r2.RawConfig) if r2.Count > 0 { result.Count = r2.Count } if len(r2.Provisioners) > 0 { result.Provisioners = r2.Provisioners } return &result } // DefaultsMap returns a map of default values for this variable. func (v *Variable) DefaultsMap() map[string]string { if v.Default == nil { return nil } n := fmt.Sprintf("var.%s", v.Name) switch v.Type() { case VariableTypeString: return map[string]string{n: v.Default.(string)} case VariableTypeMap: result := flatmap.Flatten(map[string]interface{}{ n: v.Default.(map[string]string), }) result[n] = v.Name return result default: return nil } } // Merge merges two variables to create a new third variable. func (v *Variable) Merge(v2 *Variable) *Variable { // Shallow copy the variable result := *v // The names should be the same, but the second name always wins. result.Name = v2.Name if v2.Default != nil { result.Default = v2.Default } if v2.Description != "" { result.Description = v2.Description } return &result } // Type returns the type of varialbe this is. func (v *Variable) Type() VariableType { if v.Default == nil { return VariableTypeString } var strVal string if err := mapstructure.WeakDecode(v.Default, &strVal); err == nil { v.Default = strVal return VariableTypeString } var m map[string]string if err := mapstructure.WeakDecode(v.Default, &m); err == nil { v.Default = m return VariableTypeMap } return VariableTypeUnknown } func (v *Variable) mergerName() string { return v.Name } func (v *Variable) mergerMerge(m merger) merger { return v.Merge(m.(*Variable)) } // Required tests whether a variable is required or not. func (v *Variable) Required() bool { return v.Default == nil }