terraform/internal/states/state_string.go

278 lines
7.9 KiB
Go

package states
import (
"bufio"
"bytes"
"encoding/json"
"fmt"
"sort"
"strings"
ctyjson "github.com/zclconf/go-cty/cty/json"
"github.com/hashicorp/terraform/internal/addrs"
"github.com/hashicorp/terraform/internal/configs/hcl2shim"
)
// String returns a rather-odd string representation of the entire state.
//
// This is intended to match the behavior of the older terraform.State.String
// method that is used in lots of existing tests. It should not be used in
// new tests: instead, use "cmp" to directly compare the state data structures
// and print out a diff if they do not match.
//
// This method should never be used in non-test code, whether directly by call
// or indirectly via a %s or %q verb in package fmt.
func (s *State) String() string {
if s == nil {
return "<nil>"
}
// sort the modules by name for consistent output
modules := make([]string, 0, len(s.Modules))
for m := range s.Modules {
modules = append(modules, m)
}
sort.Strings(modules)
var buf bytes.Buffer
for _, name := range modules {
m := s.Modules[name]
mStr := m.testString()
// If we're the root module, we just write the output directly.
if m.Addr.IsRoot() {
buf.WriteString(mStr + "\n")
continue
}
// We need to build out a string that resembles the not-quite-standard
// format that terraform.State.String used to use, where there's a
// "module." prefix but then just a chain of all of the module names
// without any further "module." portions.
buf.WriteString("module")
for _, step := range m.Addr {
buf.WriteByte('.')
buf.WriteString(step.Name)
if step.InstanceKey != addrs.NoKey {
buf.WriteString(step.InstanceKey.String())
}
}
buf.WriteString(":\n")
s := bufio.NewScanner(strings.NewReader(mStr))
for s.Scan() {
text := s.Text()
if text != "" {
text = " " + text
}
buf.WriteString(fmt.Sprintf("%s\n", text))
}
}
return strings.TrimSpace(buf.String())
}
// testString is used to produce part of the output of State.String. It should
// never be used directly.
func (ms *Module) testString() string {
var buf bytes.Buffer
if len(ms.Resources) == 0 {
buf.WriteString("<no state>")
}
// We use AbsResourceInstance here, even though everything belongs to
// the same module, just because we have a sorting behavior defined
// for those but not for just ResourceInstance.
addrsOrder := make([]addrs.AbsResourceInstance, 0, len(ms.Resources))
for _, rs := range ms.Resources {
for ik := range rs.Instances {
addrsOrder = append(addrsOrder, rs.Addr.Instance(ik))
}
}
sort.Slice(addrsOrder, func(i, j int) bool {
return addrsOrder[i].Less(addrsOrder[j])
})
for _, fakeAbsAddr := range addrsOrder {
addr := fakeAbsAddr.Resource
rs := ms.Resource(addr.ContainingResource())
is := ms.ResourceInstance(addr)
// Here we need to fake up a legacy-style address as the old state
// types would've used, since that's what our tests against those
// old types expect. The significant difference is that instancekey
// is dot-separated rather than using index brackets.
k := addr.ContainingResource().String()
if addr.Key != addrs.NoKey {
switch tk := addr.Key.(type) {
case addrs.IntKey:
k = fmt.Sprintf("%s.%d", k, tk)
default:
// No other key types existed for the legacy types, so we
// can do whatever we want here. We'll just use our standard
// syntax for these.
k = k + tk.String()
}
}
id := LegacyInstanceObjectID(is.Current)
taintStr := ""
if is.Current != nil && is.Current.Status == ObjectTainted {
taintStr = " (tainted)"
}
deposedStr := ""
if len(is.Deposed) > 0 {
deposedStr = fmt.Sprintf(" (%d deposed)", len(is.Deposed))
}
buf.WriteString(fmt.Sprintf("%s:%s%s\n", k, taintStr, deposedStr))
buf.WriteString(fmt.Sprintf(" ID = %s\n", id))
buf.WriteString(fmt.Sprintf(" provider = %s\n", rs.ProviderConfig.String()))
// Attributes were a flatmap before, but are not anymore. To preserve
// our old output as closely as possible we need to do a conversion
// to flatmap. Normally we'd want to do this with schema for
// accuracy, but for our purposes here it only needs to be approximate.
// This should produce an identical result for most cases, though
// in particular will differ in a few cases:
// - The keys used for elements in a set will be different
// - Values for attributes of type cty.DynamicPseudoType will be
// misinterpreted (but these weren't possible in old world anyway)
var attributes map[string]string
if obj := is.Current; obj != nil {
switch {
case obj.AttrsFlat != nil:
// Easy (but increasingly unlikely) case: the state hasn't
// actually been upgraded to the new form yet.
attributes = obj.AttrsFlat
case obj.AttrsJSON != nil:
ty, err := ctyjson.ImpliedType(obj.AttrsJSON)
if err == nil {
val, err := ctyjson.Unmarshal(obj.AttrsJSON, ty)
if err == nil {
attributes = hcl2shim.FlatmapValueFromHCL2(val)
}
}
}
}
attrKeys := make([]string, 0, len(attributes))
for ak, val := range attributes {
if ak == "id" {
continue
}
// don't show empty containers in the output
if val == "0" && (strings.HasSuffix(ak, ".#") || strings.HasSuffix(ak, ".%")) {
continue
}
attrKeys = append(attrKeys, ak)
}
sort.Strings(attrKeys)
for _, ak := range attrKeys {
av := attributes[ak]
buf.WriteString(fmt.Sprintf(" %s = %s\n", ak, av))
}
// CAUTION: Since deposed keys are now random strings instead of
// incrementing integers, this result will not be deterministic
// if there is more than one deposed object.
i := 1
for _, t := range is.Deposed {
id := LegacyInstanceObjectID(t)
taintStr := ""
if t.Status == ObjectTainted {
taintStr = " (tainted)"
}
buf.WriteString(fmt.Sprintf(" Deposed ID %d = %s%s\n", i, id, taintStr))
i++
}
if obj := is.Current; obj != nil && len(obj.Dependencies) > 0 {
buf.WriteString("\n Dependencies:\n")
for _, dep := range obj.Dependencies {
buf.WriteString(fmt.Sprintf(" %s\n", dep.String()))
}
}
}
if len(ms.OutputValues) > 0 {
buf.WriteString("\nOutputs:\n\n")
ks := make([]string, 0, len(ms.OutputValues))
for k := range ms.OutputValues {
ks = append(ks, k)
}
sort.Strings(ks)
for _, k := range ks {
v := ms.OutputValues[k]
lv := hcl2shim.ConfigValueFromHCL2(v.Value)
switch vTyped := lv.(type) {
case string:
buf.WriteString(fmt.Sprintf("%s = %s\n", k, vTyped))
case []interface{}:
buf.WriteString(fmt.Sprintf("%s = %s\n", k, vTyped))
case map[string]interface{}:
var mapKeys []string
for key := range vTyped {
mapKeys = append(mapKeys, key)
}
sort.Strings(mapKeys)
var mapBuf bytes.Buffer
mapBuf.WriteString("{")
for _, key := range mapKeys {
mapBuf.WriteString(fmt.Sprintf("%s:%s ", key, vTyped[key]))
}
mapBuf.WriteString("}")
buf.WriteString(fmt.Sprintf("%s = %s\n", k, mapBuf.String()))
default:
buf.WriteString(fmt.Sprintf("%s = %#v\n", k, lv))
}
}
}
return buf.String()
}
// LegacyInstanceObjectID is a helper for extracting an object id value from
// an instance object in a way that approximates how we used to do this
// for the old state types. ID is no longer first-class, so this is preserved
// only for compatibility with old tests that include the id as part of their
// expected value.
func LegacyInstanceObjectID(obj *ResourceInstanceObjectSrc) string {
if obj == nil {
return "<not created>"
}
if obj.AttrsJSON != nil {
type WithID struct {
ID string `json:"id"`
}
var withID WithID
err := json.Unmarshal(obj.AttrsJSON, &withID)
if err == nil {
return withID.ID
}
} else if obj.AttrsFlat != nil {
if flatID, exists := obj.AttrsFlat["id"]; exists {
return flatID
}
}
// For resource types created after we removed id as special there may
// not actually be one at all. This is okay because older tests won't
// encounter this, and new tests shouldn't be using ids.
return "<none>"
}