nebula/hostmap.go

623 lines
18 KiB
Go
Raw Permalink Normal View History

2019-11-19 18:00:20 +01:00
package nebula
import (
"context"
2019-11-19 18:00:20 +01:00
"errors"
"fmt"
"net"
"sync"
"sync/atomic"
2019-11-19 18:00:20 +01:00
"time"
"github.com/rcrowley/go-metrics"
"github.com/sirupsen/logrus"
"github.com/slackhq/nebula/cert"
"github.com/slackhq/nebula/cidr"
"github.com/slackhq/nebula/header"
"github.com/slackhq/nebula/iputil"
"github.com/slackhq/nebula/udp"
2019-11-19 18:00:20 +01:00
)
//const ProbeLen = 100
const PromoteEvery = 1000
const ReQueryEvery = 5000
2019-11-19 18:00:20 +01:00
const MaxRemotes = 10
// How long we should prevent roaming back to the previous IP.
// This helps prevent flapping due to packets already in flight
2021-03-01 17:14:34 +01:00
const RoamingSuppressSeconds = 2
2019-11-19 18:00:20 +01:00
type HostMap struct {
sync.RWMutex //Because we concurrently read and write to our maps
name string
Indexes map[uint32]*HostInfo
RemoteIndexes map[uint32]*HostInfo
Hosts map[iputil.VpnIp]*HostInfo
2019-11-19 18:00:20 +01:00
preferredRanges []*net.IPNet
vpnCIDR *net.IPNet
metricsEnabled bool
2021-03-26 15:46:30 +01:00
l *logrus.Logger
2019-11-19 18:00:20 +01:00
}
type HostInfo struct {
sync.RWMutex
remote *udp.Addr
remotes *RemoteList
2019-11-19 18:00:20 +01:00
promoteCounter uint32
ConnectionState *ConnectionState
handshakeStart time.Time //todo: this an entry in the handshake manager
HandshakeReady bool //todo: being in the manager means you are ready
HandshakeCounter int //todo: another handshake manager entry
HandshakeComplete bool //todo: this should go away in favor of ConnectionState.ready
HandshakePacket map[uint8][]byte //todo: this is other handshake manager entry
packetStore []*cachedPacket //todo: this is other handshake manager entry
2019-11-19 18:00:20 +01:00
remoteIndexId uint32
localIndexId uint32
vpnIp iputil.VpnIp
2019-11-19 18:00:20 +01:00
recvError int
remoteCidr *cidr.Tree4
2019-11-19 18:00:20 +01:00
// lastRebindCount is the other side of Interface.rebindCount, if these values don't match then we need to ask LH
// for a punch from the remote end of this tunnel. The goal being to prime their conntrack for our traffic just like
// with a handshake
lastRebindCount int8
// lastHandshakeTime records the time the remote side told us about at the stage when the handshake was completed locally
// Stage 1 packet will contain it if I am a responder, stage 2 packet if I am an initiator
// This is used to avoid an attack where a handshake packet is replayed after some time
lastHandshakeTime uint64
2019-11-19 18:00:20 +01:00
lastRoam time.Time
lastRoamRemote *udp.Addr
2019-11-19 18:00:20 +01:00
}
type cachedPacket struct {
messageType header.MessageType
messageSubType header.MessageSubType
2019-11-19 18:00:20 +01:00
callback packetCallback
packet []byte
}
type packetCallback func(t header.MessageType, st header.MessageSubType, h *HostInfo, p, nb, out []byte)
2019-11-19 18:00:20 +01:00
type cachedPacketMetrics struct {
sent metrics.Counter
dropped metrics.Counter
}
2021-03-26 15:46:30 +01:00
func NewHostMap(l *logrus.Logger, name string, vpnCIDR *net.IPNet, preferredRanges []*net.IPNet) *HostMap {
h := map[iputil.VpnIp]*HostInfo{}
2019-11-19 18:00:20 +01:00
i := map[uint32]*HostInfo{}
r := map[uint32]*HostInfo{}
2019-11-19 18:00:20 +01:00
m := HostMap{
name: name,
Indexes: i,
RemoteIndexes: r,
2019-11-19 18:00:20 +01:00
Hosts: h,
preferredRanges: preferredRanges,
vpnCIDR: vpnCIDR,
2021-03-26 15:46:30 +01:00
l: l,
2019-11-19 18:00:20 +01:00
}
return &m
}
// UpdateStats takes a name and reports host and index counts to the stats collection system
func (hm *HostMap) EmitStats(name string) {
hm.RLock()
hostLen := len(hm.Hosts)
indexLen := len(hm.Indexes)
remoteIndexLen := len(hm.RemoteIndexes)
2019-11-19 18:00:20 +01:00
hm.RUnlock()
metrics.GetOrRegisterGauge("hostmap."+name+".hosts", nil).Update(int64(hostLen))
metrics.GetOrRegisterGauge("hostmap."+name+".indexes", nil).Update(int64(indexLen))
metrics.GetOrRegisterGauge("hostmap."+name+".remoteIndexes", nil).Update(int64(remoteIndexLen))
2019-11-19 18:00:20 +01:00
}
func (hm *HostMap) GetIndexByVpnIp(vpnIp iputil.VpnIp) (uint32, error) {
2019-11-19 18:00:20 +01:00
hm.RLock()
if i, ok := hm.Hosts[vpnIp]; ok {
2019-11-19 18:00:20 +01:00
index := i.localIndexId
hm.RUnlock()
return index, nil
}
hm.RUnlock()
return 0, errors.New("vpn IP not found")
}
func (hm *HostMap) Add(ip iputil.VpnIp, hostinfo *HostInfo) {
2019-11-19 18:00:20 +01:00
hm.Lock()
hm.Hosts[ip] = hostinfo
hm.Unlock()
}
func (hm *HostMap) AddVpnIp(vpnIp iputil.VpnIp, init func(hostinfo *HostInfo)) (hostinfo *HostInfo, created bool) {
2019-11-19 18:00:20 +01:00
hm.RLock()
if h, ok := hm.Hosts[vpnIp]; !ok {
2019-11-19 18:00:20 +01:00
hm.RUnlock()
h = &HostInfo{
promoteCounter: 0,
vpnIp: vpnIp,
2019-11-19 18:00:20 +01:00
HandshakePacket: make(map[uint8][]byte, 0),
}
if init != nil {
init(h)
}
2019-11-19 18:00:20 +01:00
hm.Lock()
hm.Hosts[vpnIp] = h
2019-11-19 18:00:20 +01:00
hm.Unlock()
return h, true
2019-11-19 18:00:20 +01:00
} else {
hm.RUnlock()
return h, false
2019-11-19 18:00:20 +01:00
}
}
func (hm *HostMap) DeleteVpnIp(vpnIp iputil.VpnIp) {
2019-11-19 18:00:20 +01:00
hm.Lock()
delete(hm.Hosts, vpnIp)
2019-11-19 18:00:20 +01:00
if len(hm.Hosts) == 0 {
hm.Hosts = map[iputil.VpnIp]*HostInfo{}
2019-11-19 18:00:20 +01:00
}
hm.Unlock()
2021-03-26 15:46:30 +01:00
if hm.l.Level >= logrus.DebugLevel {
hm.l.WithField("hostMap", m{"mapName": hm.name, "vpnIp": vpnIp, "mapTotalSize": len(hm.Hosts)}).
2019-11-19 18:00:20 +01:00
Debug("Hostmap vpnIp deleted")
}
}
// Only used by pendingHostMap when the remote index is not initially known
func (hm *HostMap) addRemoteIndexHostInfo(index uint32, h *HostInfo) {
hm.Lock()
h.remoteIndexId = index
hm.RemoteIndexes[index] = h
hm.Unlock()
2021-03-26 15:46:30 +01:00
if hm.l.Level > logrus.DebugLevel {
hm.l.WithField("hostMap", m{"mapName": hm.name, "indexNumber": index, "mapTotalSize": len(hm.Indexes),
"hostinfo": m{"existing": true, "localIndexId": h.localIndexId, "hostId": h.vpnIp}}).
Debug("Hostmap remoteIndex added")
}
}
func (hm *HostMap) AddVpnIpHostInfo(vpnIp iputil.VpnIp, h *HostInfo) {
2019-11-19 18:00:20 +01:00
hm.Lock()
h.vpnIp = vpnIp
hm.Hosts[vpnIp] = h
hm.Indexes[h.localIndexId] = h
hm.RemoteIndexes[h.remoteIndexId] = h
2019-11-19 18:00:20 +01:00
hm.Unlock()
2021-03-26 15:46:30 +01:00
if hm.l.Level > logrus.DebugLevel {
hm.l.WithField("hostMap", m{"mapName": hm.name, "vpnIp": vpnIp, "mapTotalSize": len(hm.Hosts),
"hostinfo": m{"existing": true, "localIndexId": h.localIndexId, "vpnIp": h.vpnIp}}).
2019-11-19 18:00:20 +01:00
Debug("Hostmap vpnIp added")
}
}
// This is only called in pendingHostmap, to cleanup an inbound handshake
2019-11-19 18:00:20 +01:00
func (hm *HostMap) DeleteIndex(index uint32) {
hm.Lock()
hostinfo, ok := hm.Indexes[index]
if ok {
delete(hm.Indexes, index)
delete(hm.RemoteIndexes, hostinfo.remoteIndexId)
// Check if we have an entry under hostId that matches the same hostinfo
// instance. Clean it up as well if we do.
hostinfo2, ok := hm.Hosts[hostinfo.vpnIp]
if ok && hostinfo2 == hostinfo {
delete(hm.Hosts, hostinfo.vpnIp)
}
2019-11-19 18:00:20 +01:00
}
hm.Unlock()
2021-03-26 15:46:30 +01:00
if hm.l.Level >= logrus.DebugLevel {
hm.l.WithField("hostMap", m{"mapName": hm.name, "indexNumber": index, "mapTotalSize": len(hm.Indexes)}).
2019-11-19 18:00:20 +01:00
Debug("Hostmap index deleted")
}
}
// This is used to cleanup on recv_error
func (hm *HostMap) DeleteReverseIndex(index uint32) {
hm.Lock()
hostinfo, ok := hm.RemoteIndexes[index]
if ok {
delete(hm.Indexes, hostinfo.localIndexId)
delete(hm.RemoteIndexes, index)
// Check if we have an entry under hostId that matches the same hostinfo
// instance. Clean it up as well if we do (they might not match in pendingHostmap)
var hostinfo2 *HostInfo
hostinfo2, ok = hm.Hosts[hostinfo.vpnIp]
if ok && hostinfo2 == hostinfo {
delete(hm.Hosts, hostinfo.vpnIp)
}
}
hm.Unlock()
2021-03-26 15:46:30 +01:00
if hm.l.Level >= logrus.DebugLevel {
hm.l.WithField("hostMap", m{"mapName": hm.name, "indexNumber": index, "mapTotalSize": len(hm.Indexes)}).
Debug("Hostmap remote index deleted")
}
}
func (hm *HostMap) DeleteHostInfo(hostinfo *HostInfo) {
hm.Lock()
defer hm.Unlock()
hm.unlockedDeleteHostInfo(hostinfo)
}
func (hm *HostMap) unlockedDeleteHostInfo(hostinfo *HostInfo) {
// Check if this same hostId is in the hostmap with a different instance.
// This could happen if we have an entry in the pending hostmap with different
// index values than the one in the main hostmap.
hostinfo2, ok := hm.Hosts[hostinfo.vpnIp]
if ok && hostinfo2 != hostinfo {
delete(hm.Hosts, hostinfo2.vpnIp)
delete(hm.Indexes, hostinfo2.localIndexId)
delete(hm.RemoteIndexes, hostinfo2.remoteIndexId)
}
delete(hm.Hosts, hostinfo.vpnIp)
if len(hm.Hosts) == 0 {
hm.Hosts = map[iputil.VpnIp]*HostInfo{}
}
delete(hm.Indexes, hostinfo.localIndexId)
if len(hm.Indexes) == 0 {
hm.Indexes = map[uint32]*HostInfo{}
}
delete(hm.RemoteIndexes, hostinfo.remoteIndexId)
if len(hm.RemoteIndexes) == 0 {
hm.RemoteIndexes = map[uint32]*HostInfo{}
}
2021-03-26 15:46:30 +01:00
if hm.l.Level >= logrus.DebugLevel {
hm.l.WithField("hostMap", m{"mapName": hm.name, "mapTotalSize": len(hm.Hosts),
"vpnIp": hostinfo.vpnIp, "indexNumber": hostinfo.localIndexId, "remoteIndexNumber": hostinfo.remoteIndexId}).
Debug("Hostmap hostInfo deleted")
}
}
2019-11-19 18:00:20 +01:00
func (hm *HostMap) QueryIndex(index uint32) (*HostInfo, error) {
//TODO: we probably just want ot return bool instead of error, or at least a static error
hm.RLock()
if h, ok := hm.Indexes[index]; ok {
hm.RUnlock()
return h, nil
} else {
hm.RUnlock()
return nil, errors.New("unable to find index")
}
}
func (hm *HostMap) QueryReverseIndex(index uint32) (*HostInfo, error) {
hm.RLock()
if h, ok := hm.RemoteIndexes[index]; ok {
hm.RUnlock()
return h, nil
} else {
hm.RUnlock()
return nil, fmt.Errorf("unable to find reverse index or connectionstate nil in %s hostmap", hm.name)
2019-11-19 18:00:20 +01:00
}
}
func (hm *HostMap) QueryVpnIp(vpnIp iputil.VpnIp) (*HostInfo, error) {
return hm.queryVpnIp(vpnIp, nil)
2019-11-19 18:00:20 +01:00
}
// PromoteBestQueryVpnIp will attempt to lazily switch to the best remote every
2019-11-19 18:00:20 +01:00
// `PromoteEvery` calls to this function for a given host.
func (hm *HostMap) PromoteBestQueryVpnIp(vpnIp iputil.VpnIp, ifce *Interface) (*HostInfo, error) {
return hm.queryVpnIp(vpnIp, ifce)
2019-11-19 18:00:20 +01:00
}
func (hm *HostMap) queryVpnIp(vpnIp iputil.VpnIp, promoteIfce *Interface) (*HostInfo, error) {
2019-11-19 18:00:20 +01:00
hm.RLock()
if h, ok := hm.Hosts[vpnIp]; ok {
hm.RUnlock()
// Do not attempt promotion if you are a lighthouse
if promoteIfce != nil && !promoteIfce.lightHouse.amLighthouse {
2019-11-19 18:00:20 +01:00
h.TryPromoteBest(hm.preferredRanges, promoteIfce)
}
return h, nil
2019-11-19 18:00:20 +01:00
}
hm.RUnlock()
return nil, errors.New("unable to find host")
2019-11-19 18:00:20 +01:00
}
// We already have the hm Lock when this is called, so make sure to not call
// any other methods that might try to grab it again
func (hm *HostMap) addHostInfo(hostinfo *HostInfo, f *Interface) {
if f.serveDns {
remoteCert := hostinfo.ConnectionState.peerCert
dnsR.Add(remoteCert.Details.Name+".", remoteCert.Details.Ips[0].IP.String())
2019-11-19 18:00:20 +01:00
}
hm.Hosts[hostinfo.vpnIp] = hostinfo
hm.Indexes[hostinfo.localIndexId] = hostinfo
hm.RemoteIndexes[hostinfo.remoteIndexId] = hostinfo
2019-11-19 18:00:20 +01:00
2021-03-26 15:46:30 +01:00
if hm.l.Level >= logrus.DebugLevel {
hm.l.WithField("hostMap", m{"mapName": hm.name, "vpnIp": hostinfo.vpnIp, "mapTotalSize": len(hm.Hosts),
"hostinfo": m{"existing": true, "localIndexId": hostinfo.localIndexId, "hostId": hostinfo.vpnIp}}).
Debug("Hostmap vpnIp added")
2019-11-19 18:00:20 +01:00
}
}
// punchList assembles a list of all non nil RemoteList pointer entries in this hostmap
// The caller can then do the its work outside of the read lock
func (hm *HostMap) punchList(rl []*RemoteList) []*RemoteList {
2019-11-19 18:00:20 +01:00
hm.RLock()
defer hm.RUnlock()
2019-11-19 18:00:20 +01:00
for _, v := range hm.Hosts {
if v.remotes != nil {
rl = append(rl, v.remotes)
2019-11-19 18:00:20 +01:00
}
}
return rl
2019-11-19 18:00:20 +01:00
}
// Punchy iterates through the result of punchList() to assemble all known addresses and sends a hole punch packet to them
func (hm *HostMap) Punchy(ctx context.Context, conn *udp.Conn) {
var metricsTxPunchy metrics.Counter
if hm.metricsEnabled {
metricsTxPunchy = metrics.GetOrRegisterCounter("messages.tx.punchy", nil)
} else {
metricsTxPunchy = metrics.NilCounter{}
}
var remotes []*RemoteList
2021-03-19 02:37:24 +01:00
b := []byte{1}
clockSource := time.NewTicker(time.Second * 10)
defer clockSource.Stop()
2019-11-19 18:00:20 +01:00
for {
remotes = hm.punchList(remotes[:0])
for _, rl := range remotes {
//TODO: CopyAddrs generates garbage but ForEach locks for the work here, figure out which way is better
for _, addr := range rl.CopyAddrs(hm.preferredRanges) {
metricsTxPunchy.Inc(1)
conn.WriteTo(b, addr)
}
2019-11-19 18:00:20 +01:00
}
select {
case <-ctx.Done():
return
case <-clockSource.C:
continue
}
2019-11-19 18:00:20 +01:00
}
}
// TryPromoteBest handles re-querying lighthouses and probing for better paths
// NOTE: It is an error to call this if you are a lighthouse since they should not roam clients!
2019-11-19 18:00:20 +01:00
func (i *HostInfo) TryPromoteBest(preferredRanges []*net.IPNet, ifce *Interface) {
c := atomic.AddUint32(&i.promoteCounter, 1)
if c%PromoteEvery == 0 {
// The lock here is currently protecting i.remote access
i.RLock()
defer i.RUnlock()
2019-11-19 18:00:20 +01:00
// return early if we are already on a preferred remote
2021-03-19 02:37:24 +01:00
rIP := i.remote.IP
2019-11-19 18:00:20 +01:00
for _, l := range preferredRanges {
if l.Contains(rIP) {
return
}
}
i.remotes.ForEach(preferredRanges, func(addr *udp.Addr, preferred bool) {
if addr == nil || !preferred {
return
}
2019-11-19 18:00:20 +01:00
// Try to send a test packet to that host, this should
// cause it to detect a roaming event and switch remotes
ifce.send(header.Test, header.TestRequest, i.ConnectionState, i, addr, []byte(""), make([]byte, 12, 12), make([]byte, mtu))
})
2019-11-19 18:00:20 +01:00
}
// Re query our lighthouses for new remotes occasionally
if c%ReQueryEvery == 0 && ifce.lightHouse != nil {
ifce.lightHouse.QueryServer(i.vpnIp, ifce)
2019-11-19 18:00:20 +01:00
}
}
func (i *HostInfo) cachePacket(l *logrus.Logger, t header.MessageType, st header.MessageSubType, packet []byte, f packetCallback, m *cachedPacketMetrics) {
2019-11-19 18:00:20 +01:00
//TODO: return the error so we can log with more context
if len(i.packetStore) < 100 {
tempPacket := make([]byte, len(packet))
copy(tempPacket, packet)
//l.WithField("trace", string(debug.Stack())).Error("Caching packet", tempPacket)
i.packetStore = append(i.packetStore, &cachedPacket{t, st, f, tempPacket})
if l.Level >= logrus.DebugLevel {
2021-03-26 15:46:30 +01:00
i.logger(l).
WithField("length", len(i.packetStore)).
WithField("stored", true).
Debugf("Packet store")
}
2019-11-19 18:00:20 +01:00
} else if l.Level >= logrus.DebugLevel {
m.dropped.Inc(1)
2021-03-26 15:46:30 +01:00
i.logger(l).
2019-11-19 18:00:20 +01:00
WithField("length", len(i.packetStore)).
WithField("stored", false).
Debugf("Packet store")
}
}
// handshakeComplete will set the connection as ready to communicate, as well as flush any stored packets
func (i *HostInfo) handshakeComplete(l *logrus.Logger, m *cachedPacketMetrics) {
2019-11-19 18:00:20 +01:00
//TODO: I'm not certain the distinction between handshake complete and ConnectionState being ready matters because:
//TODO: HandshakeComplete means send stored packets and ConnectionState.ready means we are ready to send
//TODO: if the transition from HandhsakeComplete to ConnectionState.ready happens all within this function they are identical
i.ConnectionState.queueLock.Lock()
i.HandshakeComplete = true
//TODO: this should be managed by the handshake state machine to set it based on how many handshake were seen.
// Clamping it to 2 gets us out of the woods for now
atomic.StoreUint64(&i.ConnectionState.atomicMessageCounter, 2)
if l.Level >= logrus.DebugLevel {
2021-03-26 15:46:30 +01:00
i.logger(l).Debugf("Sending %d stored packets", len(i.packetStore))
}
if len(i.packetStore) > 0 {
nb := make([]byte, 12, 12)
out := make([]byte, mtu)
for _, cp := range i.packetStore {
cp.callback(cp.messageType, cp.messageSubType, i, cp.packet, nb, out)
}
m.sent.Inc(int64(len(i.packetStore)))
2019-11-19 18:00:20 +01:00
}
i.remotes.ResetBlockedRemotes()
2019-11-19 18:00:20 +01:00
i.packetStore = make([]*cachedPacket, 0)
i.ConnectionState.ready = true
i.ConnectionState.queueLock.Unlock()
i.ConnectionState.certState = nil
}
func (i *HostInfo) GetCert() *cert.NebulaCertificate {
if i.ConnectionState != nil {
return i.ConnectionState.peerCert
}
return nil
}
func (i *HostInfo) SetRemote(remote *udp.Addr) {
// We copy here because we likely got this remote from a source that reuses the object
if !i.remote.Equals(remote) {
i.remote = remote.Copy()
i.remotes.LearnRemote(i.vpnIp, remote.Copy())
2021-03-31 17:26:35 +02:00
}
2019-11-19 18:00:20 +01:00
}
// SetRemoteIfPreferred returns true if the remote was changed. The lastRoam
// time on the HostInfo will also be updated.
func (i *HostInfo) SetRemoteIfPreferred(hm *HostMap, newRemote *udp.Addr) bool {
currentRemote := i.remote
if currentRemote == nil {
i.SetRemote(newRemote)
return true
}
// NOTE: We do this loop here instead of calling `isPreferred` in
// remote_list.go so that we only have to loop over preferredRanges once.
newIsPreferred := false
for _, l := range hm.preferredRanges {
// return early if we are already on a preferred remote
if l.Contains(currentRemote.IP) {
return false
}
if l.Contains(newRemote.IP) {
newIsPreferred = true
}
}
if newIsPreferred {
// Consider this a roaming event
i.lastRoam = time.Now()
i.lastRoamRemote = currentRemote.Copy()
i.SetRemote(newRemote)
return true
}
return false
}
2019-11-19 18:00:20 +01:00
func (i *HostInfo) RecvErrorExceeded() bool {
if i.recvError < 3 {
i.recvError += 1
return false
}
return true
}
2019-12-12 17:34:17 +01:00
func (i *HostInfo) CreateRemoteCIDR(c *cert.NebulaCertificate) {
if len(c.Details.Ips) == 1 && len(c.Details.Subnets) == 0 {
// Simple case, no CIDRTree needed
return
}
remoteCidr := cidr.NewTree4()
2019-12-12 17:34:17 +01:00
for _, ip := range c.Details.Ips {
remoteCidr.AddCIDR(&net.IPNet{IP: ip.IP, Mask: net.IPMask{255, 255, 255, 255}}, struct{}{})
}
for _, n := range c.Details.Subnets {
remoteCidr.AddCIDR(n, struct{}{})
}
i.remoteCidr = remoteCidr
}
2021-03-26 15:46:30 +01:00
func (i *HostInfo) logger(l *logrus.Logger) *logrus.Entry {
if i == nil {
return logrus.NewEntry(l)
}
li := l.WithField("vpnIp", i.vpnIp)
if connState := i.ConnectionState; connState != nil {
if peerCert := connState.peerCert; peerCert != nil {
li = li.WithField("certName", peerCert.Details.Name)
}
}
return li
}
2019-11-19 18:00:20 +01:00
// Utility functions
func localIps(l *logrus.Logger, allowList *LocalAllowList) *[]net.IP {
2019-11-19 18:00:20 +01:00
//FIXME: This function is pretty garbage
var ips []net.IP
ifaces, _ := net.Interfaces()
for _, i := range ifaces {
Add lighthouse.{remoteAllowList,localAllowList} (#217) These settings make it possible to blacklist / whitelist IP addresses that are used for remote connections. `lighthouse.remoteAllowList` filters which remote IPs are allow when fetching from the lighthouse (or, if you are the lighthouse, which IPs you store and forward to querying hosts). By default, any remote IPs are allowed. You can provide CIDRs here with `true` to allow and `false` to deny. The most specific CIDR rule applies to each remote. If all rules are "allow", the default will be "deny", and vice-versa. If both "allow" and "deny" rules are present, then you MUST set a rule for "0.0.0.0/0" as the default. lighthouse: remoteAllowList: # Example to block IPs from this subnet from being used for remote IPs. "172.16.0.0/12": false # A more complicated example, allow public IPs but only private IPs from a specific subnet "0.0.0.0/0": true "10.0.0.0/8": false "10.42.42.0/24": true `lighthouse.localAllowList` has the same logic as above, but it applies to the local addresses we advertise to the lighthouse. Additionally, you can specify an `interfaces` map of regular expressions to match against interface names. The regexp must match the entire name. All interface rules must be either true or false (and the default rule will be the inverse). CIDR rules are matched after interface name rules. Default is all local IP addresses. lighthouse: localAllowList: # Example to blacklist docker interfaces. interfaces: 'docker.*': false # Example to only advertise IPs in this subnet to the lighthouse. "10.0.0.0/8": true
2020-04-08 21:36:43 +02:00
allow := allowList.AllowName(i.Name)
2021-03-31 17:26:35 +02:00
if l.Level >= logrus.TraceLevel {
l.WithField("interfaceName", i.Name).WithField("allow", allow).Trace("localAllowList.AllowName")
}
Add lighthouse.{remoteAllowList,localAllowList} (#217) These settings make it possible to blacklist / whitelist IP addresses that are used for remote connections. `lighthouse.remoteAllowList` filters which remote IPs are allow when fetching from the lighthouse (or, if you are the lighthouse, which IPs you store and forward to querying hosts). By default, any remote IPs are allowed. You can provide CIDRs here with `true` to allow and `false` to deny. The most specific CIDR rule applies to each remote. If all rules are "allow", the default will be "deny", and vice-versa. If both "allow" and "deny" rules are present, then you MUST set a rule for "0.0.0.0/0" as the default. lighthouse: remoteAllowList: # Example to block IPs from this subnet from being used for remote IPs. "172.16.0.0/12": false # A more complicated example, allow public IPs but only private IPs from a specific subnet "0.0.0.0/0": true "10.0.0.0/8": false "10.42.42.0/24": true `lighthouse.localAllowList` has the same logic as above, but it applies to the local addresses we advertise to the lighthouse. Additionally, you can specify an `interfaces` map of regular expressions to match against interface names. The regexp must match the entire name. All interface rules must be either true or false (and the default rule will be the inverse). CIDR rules are matched after interface name rules. Default is all local IP addresses. lighthouse: localAllowList: # Example to blacklist docker interfaces. interfaces: 'docker.*': false # Example to only advertise IPs in this subnet to the lighthouse. "10.0.0.0/8": true
2020-04-08 21:36:43 +02:00
if !allow {
continue
}
2019-11-19 18:00:20 +01:00
addrs, _ := i.Addrs()
for _, addr := range addrs {
var ip net.IP
switch v := addr.(type) {
case *net.IPNet:
//continue
ip = v.IP
case *net.IPAddr:
ip = v.IP
}
2021-03-19 02:37:24 +01:00
//TODO: Filtering out link local for now, this is probably the most correct thing
//TODO: Would be nice to filter out SLAAC MAC based ips as well
if ip.IsLoopback() == false && !ip.IsLinkLocalUnicast() {
allow := allowList.Allow(ip)
2021-03-31 17:26:35 +02:00
if l.Level >= logrus.TraceLevel {
l.WithField("localIp", ip).WithField("allow", allow).Trace("localAllowList.Allow")
}
Add lighthouse.{remoteAllowList,localAllowList} (#217) These settings make it possible to blacklist / whitelist IP addresses that are used for remote connections. `lighthouse.remoteAllowList` filters which remote IPs are allow when fetching from the lighthouse (or, if you are the lighthouse, which IPs you store and forward to querying hosts). By default, any remote IPs are allowed. You can provide CIDRs here with `true` to allow and `false` to deny. The most specific CIDR rule applies to each remote. If all rules are "allow", the default will be "deny", and vice-versa. If both "allow" and "deny" rules are present, then you MUST set a rule for "0.0.0.0/0" as the default. lighthouse: remoteAllowList: # Example to block IPs from this subnet from being used for remote IPs. "172.16.0.0/12": false # A more complicated example, allow public IPs but only private IPs from a specific subnet "0.0.0.0/0": true "10.0.0.0/8": false "10.42.42.0/24": true `lighthouse.localAllowList` has the same logic as above, but it applies to the local addresses we advertise to the lighthouse. Additionally, you can specify an `interfaces` map of regular expressions to match against interface names. The regexp must match the entire name. All interface rules must be either true or false (and the default rule will be the inverse). CIDR rules are matched after interface name rules. Default is all local IP addresses. lighthouse: localAllowList: # Example to blacklist docker interfaces. interfaces: 'docker.*': false # Example to only advertise IPs in this subnet to the lighthouse. "10.0.0.0/8": true
2020-04-08 21:36:43 +02:00
if !allow {
continue
}
2019-11-19 18:00:20 +01:00
ips = append(ips, ip)
}
}
}
return &ips
}